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* rN/ABSTRACT

A theoretical analysis of high-frequency radio-wave scattering from

served radar echoes and the heights and propagation directions of ocean-

surface waves. This provides new techniques for the remote sensing of

sea-surface conditions by either monostatic or bistatic radars.

Integral expressions for the incremental -surface radar cross section

per unit frequency are derived, assuming a slightly rough time-varying

£ random surface for the sea. These expressions are a function of surface-

height directional spectra and contain electromagnetic and hydrodynamic

effects to second order. First-order terms confirm that Bragg scatter-

ing from wave trains of a single frequency and direction is responsible

for the discrete lines in observed doppler spectra; the second-order

terms, which provide a continuum, are interpreted physically by a double

Bragg-scattering process that involves an intermediate-scattered radio

wave that may be either freely propagating or evanescent. A coordinate

P • transformation provides paths of integration that can ta related to spe-

cific features in observed doppler spectra and also results in a numeri-

cally efficient method for the evaluation of the second-order radar cross

sections.

P Doppler spectra calculated from model ocean wave-height directional

spectra agree generally in shape, power content, and occurrence of swell

with data from radar and oceanographic measurements. It is concluded

that second-order effects and double Bragg scattering are responsible

for most of the features in the continuum of doppler spectra of radar

echoes from the sea. Parameters for estimating wind speed and direc-

tion, based on the variations of radar cross section with these condi-

tions, are consistent with the available experimental data.

;;A4

- 4 -sc

iii ~ C



CONTENTS

Page

I. INTRODUCTION ................ o....... 1

A. Motivation ................... ....................... 2

B. Organization ................... ...................... 3

C. Contributions .................. ..................... 4

II. ELECTROMAGNETIC SCATTERING THEORY .......... ............. 5

A. Rice's Scattering Theory ............. ................ 7

1. Surfaces and Statistics ............ .............. 7
2. Electromagnetic-Field Expansion and Boundary

Conditions ............... .................... .. 13

B. Stratton-Chu Integral .......... ................. .... 21

C. First- and Second-Order Radar Cross Sections ........ .. 30

1. Radar Cross Section as Power-Density Ratios . ... 30
2. Scattered Fields from Rough Surfaces of

Finite Extent ............ ................. ... 31
3. Polarized Components of Scattered Fields ........ .. 36
4. Calculation of 16W ............ ................ .. 38

D. Radar Cross Sections for Time-Varying Surfaces ..... ... 53

1. Time-Varying Surfaces and Scattered Fields ..... ... 53
2. a(w) Defined ................................. .. 55
3. Calculation of aW(w) ....... ............... ... 58

E. Effects of Finitely Conducting Surfaces ... ........ .. 72

III. HYDRODYNAMIC THEORY .............. .................... .. 79

A. Equations of Motion and Boundary Conditions .. ..... .. 79
1. Equation of Motion. Continuity Equation,

and Velocity Potential ....... ............... ... 79
2. Wave Equation ............ ................... .. 83
3. Boundary Conditions .......... ............... .. 85

B. Second-Order Wave-Height Directional Spectrum .. .... .. 88
1. Tick's Method ............ ................... .. 88
2. Second-Order Wave-Height Spectrum from ý(2) . . . 96

C. First-Order Directional Spectrum Models .... ........ .. 101

1. The Amplitude Spectrum ......................... .. 102
2. Directional Aspects ............ ................ .. 105
3. Special Considerations for Second-Order

Calculations ............... .................... .. 113
4. First-Order Models in Terms of Wave Number ....... .. 11513v_______



CONTENTS (Cont)

Page

D. A Model for Swell ........... . . . .. . 117

IV. INTERPRETATION AND EVALUATION OF OCEAN-SURFACE
RADAR CROSS-SECTION INTEGRALS ........ ............... ... 123

A. Radar Cross Section for Ocean Surfaces ... ......... ... 123

B. Bragg Scattering ............. ................... ... 127

C. Integration Techniques ........... ................ ... 133

1. Reduction of aW to Backscattc.r Grazing
Incidence ................ ................... ... 134

2. Change in Variables of Integration ... ......... ... 137

3. Integration Regions .......... ............... ... 141
4. Integration Contours . .. .. .. .. .. .. ... 146
5 . Doppler Shift as a Function of Oceau-Wave

Direction ............ ..................... .. 155
6. Integration Limits ............... ................ 160

D. Numerical Methods and Results ...... ............. ... 162

1. Integration Methods .......... ............... ... 163
2. Calculated Values of aV(V.) .... ............. ... 164
3. Estimators for Wind Speed and Direction ........ .. 177
4. Effects of Swell ............... ............ ..... 181

E. Summary .................. ...................... . . 187

V. COMPARISONS OF THEORETICAL TO EXPERIMENTAL DATA ........ .. 189

A. The Experiment ............. ..................... ... 189

"B. Comparison to Theory ........... .................. ... 193

VI. CONCLUSIONS AND RECOMMENDATIONS ...... .............. ... 203

Appendix A. INTEGRATION NEAR SINGULARITIES IN THE
JACOBIAN ............... ...................... ... 205

0
Appendix B. EVALUATION OF FIRST-ORDER a FOR

MONOSTATIC GRAZING INCIDENCE.. ..... .......... ... 207

Appendix C. PI0! OF INCREMENTAL RADAR CROSS SECTION
FOR OCEAN SURFACES ......... ................. ... 211

BIBLIOGRAPHY .................... ......................... ... 221

viv __



ILLUSTRAT IONS

Figure Page

1. Backscattered power vs doppler shift ........ 1

2. Radar geometry ...................... 6

3. Monostat1c and bistatic radars .......... .............. 8

4. Periodic rough surface .......... .................... 9

5. Incident fields and specular direction .... .......... ... 13

6. Total fields above a surface ........ ............... .15

7. Field components at surface boundary ... ........... .... 17

8. Volume V bounded by surface S ...... ............ ... 22

9. External point enclosed by volume V ... ........... .... 23

10. Hemispherical volume with two-part surface ... ........ .. 24

11. Geometry for contour integral ...... .............. ... 26

12, Scattering geometry--vertically polarized

incident plane wave ........... .................. ... 33

13. Spherical coordinate system ...... ................ ... 37
14. Propagation along a finite conductor ...... ........... 73

15. Forces on a unit mass ....... ...................... 80

16. Pressure on a small volume of fluid .... ........... .... 81

17. Wave profile in one dimension ...... ............... ... 84

18. Fluid boundaries ............ ..................... ... 85

19. Phillips saturation and Pierson-Moskowitz
Et amplitude spectra ......... ..................... .. 104

20. Semi-isotropic directional distribution ..... ..... .... 106U 21. Cardioid directional distribution ..... ............. ...107

22. Cosine directional distribution ..... .............. .. 108

' 23. Wind speed vs friction velocity for a

logarithmic wind-speed profile ...... .............. .. 110

vii



ILLUSTRATIONS (Cont)

Figure Page

24. Allowable propagation directions for resonant waves . . . . 111

25. Spread factor s as a function of the 1.-parameter . . . . 113
*L

26. Relationship between ocean-wave and wind directions . . .. 114

27. Propagation of swell ......... ..... ................... 119

28. Deviation of a component of the swell propagation
constant ........... ....... ......................... 120

29. Reflection from a periodic structure .... ........... ... 128

30. Bragg-scattering geometry ........ ................. ... 128

31. A directional periodic structure ..... ............. ... 130

32. Incident- and reflected-ray geometry .... ........... ... 131

33. Double Br'tgg-scattering geometry ......... ............. 132

34. Propagation regions for intermediate radio wave ........ .. 141

35. Loci of ocean-wave propagation constants ..... ......... 142

36. Limits of allowable ocean-wave propagation constants . . . 143

37. Integration region in the kl,k 2 -plane .... ........... ... 144

38. Propagation regions for intermediate radio wave ........ .. 145

39. Doppler shifts from two ocean waves ..... ........... ... 147

40. Sum-mode integration contours ...... .............. ... 148

41. Difference-mode integration contoura .... ........... ... 149

42. Typical plot of incremental radar cross section for
a Munk wave-height spectrum ........ ............... ... 150

43. Radar-wind geometry .......... ... .................... 151

44. Corner reflector ......... ... ..................... ... 152

45. Second-order radar cross-section integrands ........... ... 154

46. Multiple Bragg scattering for k = k 2 =t3 ........ 155

viii



iIT,
ILLUSTRATIONS (Cont)

Figure Page

47. Single-scatter doppler-shift geometry . . . . . . . . .. . 156

48. Relationship between radio-wave and ocean-wave
propagation vectors .......... ... .................... 158

49. Integration limits ....... ..... ................... ... 160

50. Subregions of integration ........ ................. ... 163

51. Effective surface impedance ........ ... ............... 134

52. Radar cross section for a Phillips semi-isotropic
wave-height spectrum ....... ........... ........... ... 165

53. Wind directions ........ ... ..................... ... 166

54. Radar cross section for a Munk wave-height spectrum . . . . 168

55. Radar cross section for wa'res traveling against the
wind ....... ......... ........................... ... 170

56. Radar cross sect ion for a Pierson-Moskowitz cosine-
squared wave-height spectrum ....... ............... ... 171

57. Variations in radar cross section with wind direction . . . . 172

58. Variations in radar cross section with wind speed ... ..... 173

[59. Electromagnetic and hydrodynamic contributions to
radar cross section ........ ..... .................... 175

60. Radar cross section for three methods for combining

electromagnetic and hydrodynanmic effe°cts ......... ..... 176

61. Parameterization of radar croEs section. ............. ... 177

62. Bragg-line ratio vs wind speed and direction .. ....... ... 178

63. Positive-to-negative doppler-shifted power ratio
vs wind speed and direction ........ ............... ... 180

64. Variation of second-order to Bragg-line power ratio
with wind speed and direction ...... ............... ... 182

65. Radar cross section with swell ....... .............. ... 183

66. Relationships between radio-wave, local-sea, and
svell propagation constants ...... ................ ... 186

ix

4



ILLUSTRATIONS (Cont)

Figure__ae

67. Map of Wake Island ................... .190

68. Measured doppler spectrum as a function of
distance between radar and scattering area . . . . . . . . 192

69. Formation of a composite spectrum ..... ............. ... 194

70. Measured vs predicted doppler spectra for
Phillips semi-isotropic wave-height spectrum .. ....... ... 194

71. Measured vs predicted doppler spectra for Munk

wave-height spectrum ........... ................... ... 195

72. Measured nondirectional wave-height spectrum .... ....... 196

73. Measured vs predicted doppler spectra for
modified Pierson-Moskowitz wave-height spectrum .... ...... 197

74. Measured vs predicted doppler spectra for
Pierson-Moskowitz cosine-squared wave-height
spectrum ......... ..... ......................... ... 197

75. An alternate form for predicted doppler spectra .... ...... 198

76. Doppler spectra with swell included ..... ............ .. 200

77. Ocean wave that produces Bragg-line power .... ........ ... 207

78. First-order incremental radar cross section for
a Pierson-Moskowitz wave-height spectrum ... ......... ... 208

79. First-order incremental radar cross section for
a Munk wave-height spectrum ...... ................ ... 210

80. Wind directions .......... ........................ 211

81. Incremental radar cross section for Phillips
semi-isotropic wave-height spectrum . . .......... 212

82. Incremental radar cross section for a Munk
wave-height spectrum ......... ......... ........... ... 215

83. Incremental radar cross section for Pierson-
Moskowitz cosine-squared wave-height spectrum .... ....... 218

x



TABLES

Number Page

1. Summary of first-order models for ocean

wave-height directional spectra ..... ............. . . 118

2. Wind speed and direction during the
Wake-Island experimvnt .................. 191

3. Wind-speed estimation . ...... ............... ....... 199

xi



SYMBOLS

A,A(t) collection of terms
a constant

A effective area of receive antenna
e

Al A2P *.•.•,A i antenna-pattern weighting factors

A mnA ani Fourier coefficients (may be superscripted to denote

A(m,n,I,z) order)

Az( ) second partial derivative of A( ) with respect tozz

a wav number of the fundamental spatial period
za co stant defining d'irectional distribution

a unit vector (may be subscripted by a coordinate ref-
erence)

B,B(t) collection of terms

B mnBl,B(m,n,I) Fourier coefficients (may be superscripted to denote
order)

BI( ),B 2( integration constants

b( )z-component of radio-wave propagation constant

CC (t) collection of terms

C ocean-wave phase-velocity c -tour

C 0 ocean-wave phase-velocity cutoff

C liCmni Fourier coefficients (may be superscripted to denote
order)

c radio-wave propagation velocity

S(q...cI 4 integration constants

c contour

"I D,D(t) collection of terms

i •d differential operator
distance (may be subscripted)

da,ds incremental area (may be subscripted)

S~xili dad nrmntlae mybesbcitd



dv incremental volume

dc incremental distance along contour

Is incremental area with direction n
incremental path length

E electric field

E( ) exponential phase coefficient

E(t),E(t +,r) general function of time

Ei,Es incident and scattered electric fields

EV "H vertical and horizontal components of electric field

E x( ),E ( ),E (), x-, y-, z-, e-, 0-components of electric field (may
Ee( ),E( appear without arguments)

E ,E(x,y,z) electric-field vector

F(t) integration constant

X(t) Fourier transform

f,f( ) frequency
surface height
arbitrary function

f B Bragg frequency

f traismitter frequency
fx,fy partial derivatives of f(x,y) with respect to x

and y

f x-component of pressure force per unit mass

g gravity force per unit mass

T pressure force per unit mass

G antenna gain

IG(O) directior t distribution of wave-height spectrum

g acceleration of gravity

H height

H H ,H x-, y-, z-components of magnetic field

'it xiv



H magnetic-field vector

h depth
wave height

h ,h1 z-component of radio-wave propagation constant in
air and in conductor

I summation index (may be subscripted or primed)

i imaginary unit

J summation index (may be subscripted or primed)

JJ5 Jacobians

J vector, electric current dansity

K partial integrand

k ocean wave number (may be subscripted)
summation index (may be subscripted or primed)

k cutoff value of ocean wave number
c

k mean wave number for swell
m

k wave number for swell

k 20 ocean wave number fixed by doppler condition

i vector ocean wave number (may be subscripted)

L surface spatial period
ocean wavelength
linear dimension

L(s) ratio of gadmma functions

L ,Ly x-, y-components of

L directional ocean wavelength

4' summation index

m summation index (may be subscripted or primed)
integer variable

N,N(s) directional distribution normalization constant

n summation index (may be subscripted or primed)
integer variable
Bragg order



n,n ,nn x-, y-, z-components of unit normal

-n- 1 unit normal vector

P,P( ) roughness coefficient (may be subscripted)

P R'P T received and transmitted power

P general vector function
p wave number (may be subscripted or primed)

pressure

Q( ) product of two roughness coefficients

Q general vector function

q wave number (may be subscripted or primed)

R radial distance

target-to-receiver dip.tance

R( )statistical autocorrelation or autocovariance func-
tion (may be subscripted)

R1 transmitter-to-target distance
integration region radius

R2 target-to-receiver distance
integration region radius

RAR . autocorrelation of AA, BB,

time autocorrelation function (may be subscripted)

r radial distance
z-component of wave number

S,S 1  surfaces

Si incident power density at target

S scattered power density at receiverS~s

S( ),S, wave-height directional spectrum
y) wave-height spectrum (one argument)

S W ) wind-generated wave-height directional spectrum
w

S( swell wave-height directional spectrum

SS time-average power density

Zvi



s spread factor

T Fourier-expansion time period

t time variable (may be subscripted)

u dummy integei or wave-number variable (may be primed)
exponential phase factor (may be primed)

u,u(z) wind speed

u ,u ,u x-, y-, z-components of particle velocityx y z

u shear-stress (friction) velocity

u particie velocity

V closed volume

v dummy integer or wave-number variable (may be primed)

v ocean-wave velocity

WW( ) surface roughness spectrum (may be superscripted to
denote order, or subscripted)

Wsws( ) swell-generated roughness spectrum
L~ 55

Ww Ww( ) wind-generated roughness spectrum*w w

w lundamental time-harmonic in Fourier expansion

XX( ) dummy variable

XI,XR dummy argument of sinc function

x dummy argument or variable
rectangular coordinate (may be subscripted or primed)

YY( ) dummy variable

YI,YR dummy argument of sinc function

• H y dummy argument or variable
rectangular coordinate (may be subscripted or primed)

Z conductor surface impedance
S

z rectangular coordinate (may be subscripted or primed)
position of fluid particle

xvii



a sine of ei

radio-wave propagation constants
Or

* eequilibrium range constant
Pe

P ,P yP x-, y-, z-components of vector wave number
xyz

vector radio-wave numbers

Sunit vector in direction of

r,r( ) gamma function
kernel of cross-section integral

SrEM electromagnetic kernel

rH hydrodynamic kernel

7 cosine of e

Y0 x-component of radiojwave propagation constant in air

71 x-component of radio-wave propagation constant in
conductor

A normalized surface impedance

6k maximum deviation of swell wave number

maximum deviation of swell direction

8( ) Dirac delta function

5x,y,.... incremental values of x, y, ...

permittivity (may be subscripted)
small constant (may be stoscripted)

doppler shift
characteristic impedance of free space

SI,'( ) surface displacement or profile (may be superscripted
4 to denote order)

SI- •yz partial derivative of surface displacement with re-
spect to x, y, z (may have multiple subscripts or
superscripted to denote order)

e angle between ocean-wave and wind directions

S0 resonance angle
r

xviii



9 observation elevation angle (from zenith)

ei incidence angle

A m mean swell direction

958 angle between radar and swell directions
9

W 8angle between radar and wind directions

IK Karman's constant

A constant relating Charnock's and Karman's constants

7, wavelength

ýI permeability
parameter relating wind and ocean-wave speeds

go cutoff value of 1.-parameter

V integer variable
Pierson-Moskowitz spectrum constant

p charge densityr fluid density

p radial vector from origin to point on surface

a a,•Wa I,2, .... ,ai radar cross section
VV12incremental radar cross section (may appear with

alternate upper-case subscripts)

aa k' a0k standard deviations

c conductivity

a(w),aW(w),aW (T) incremental radar cross section per unit frequency
(may be superscripted to denote order or appear with
alternate upper-case subscripts)

S0 a o0 incremental rada. cross section for time-varying
surfaces (may appear with alternate upper-case sub-
scripts)

"'a statistical average incremental radar cross sectionW for static surfaces (may be superscripted to denoteJi-• order or appear with alternate upper-case subscripts)

Sdummy time variable

(D• scalar function

xix



O(M) power spectral density (may be subscripted)
wave-heIght (nondirectional) spectrum

OAA,0 AB,.... partial power spectral density for AA, AB,

0 observation azimuth angle (from x-axis)

( • angle between wind and radar directions

,$a ,p( ) velocity potential (may be superscripted to denote
order)

Px'(y ypPt partial derivatives of velocity potential with re-

spect to x, y, z, t (may be superscripted to de-

note order or have multiple subscripts)

i radian wave frequency (may be subscripted or primed)I radian wave frequency (may be subscripted or primed)

W W swell and wind-generated radian wave frequencies

OB Bragg radian frequency

Sc ocean-wave cutoff radian frequency

'ddl•D doppler radian frequencies

V grad ient operator

SV divergence operator

"V X curl operator

"v x u vorticity

E xx



ACKNOWLEDGMENT

I would like to express my sincere appreciation to Professor G. L.

Tyler whose patient guidance contributed immeasurably to this research,

to Professor V. R. Eshleman for his encouragement and comments, and to

the other members of the faculty and staff of the Stanford Center for

Radar Astronomy, especially Dr. C. C. Teague, Professor A. M. Peterson,

Dr. B. J. Lipa, and Ms. S. Barrom, for their support. Special thanks

go to Professor Emeritus G. L. Pearson for his thorough reading of this

manuscript and to Dr. R. H. Stewart of the Scripps Institution of Ocean-

ography for assisting me with the hydrodynamic theory.

Financial support was provided in part by the Office of Naval Re-

search through Contracts N00014-75-C-0356 and N00014-69-A-0200-6012

(Scripps Institution of Oceanography UCSD Contract No. 71-C-66328), by

the National Aeronautics and Space Administration through Grant No.

NGL-05-020-014, and by the National Science Foundation through NORPAX

uder thc Office of Naval Research Contract No. N00014-67-A-0112-0080.

The financial support from GTE Sylvania during most of my graduate

years is gratefully acknowledged.

xxi



Chapter I

INTRODUCTION

In the mid-1950's, Crombie (1955) presented evidence indicating

that radio waves reflected from the sea obey a Bragg-scattering law in

which the ocean waves act as a diffraction grating. He argued that the

sharp spectral lines observed in such radar echoes occur at precisely

the doppler-shifted frequencies expected of signals scattered by ocean

waves whose length is one-half the radio wavelength. The classical

deep-water dispersion relationship where wave speed is proportional to

the square root of the ocean wavelength explains the doppler shift. Be-

cause of the correspondence between ocean wavelength and observed dop-

pler shift, Crombie suggested that ocean wave-height spectra could be

studied by radar. From an experiment conducted at Wake Island, Teague

et al (1973) determined the directional wave-height spectrum of 7 sec

ocean waves by just such measurements of the discrete lines in the re-

turned-signal doppler spectrum.

In addItion to the sharp Bragg lines, the echo spectrum from ocean

surfaces contains a continuum or sideband structure (Fig. 1) that cannot

be explained by the simple Bragg theory originally proposed. Hasselmann

- fo =1.95 MHz FIRST - ORDER
W BRAGG LINES

00

-f8 0 +fB

FREQUENCY fo-f (0.74 Hz full scale)

(1 Fig. 1. BACKSCATTERED POWER ,VS DOPPLER SHIFT. Recorded at Wake
Island in November 1972, this plot is typical of observed sea

echo. The Bragg-line frequency is fB = 0.14 Hz; transmitter
frequency is f

o



(1971) suggested that higher order wave-*ave interactions, which can

also produce surface periodicities of one-half the radar wavelength,

are responsible for the continuum; however, his analysis indicatea the

presence of symmetrical sidebands about the first-order Bragg lines

which is a contradiction to the observations presented in Fig. 1. In

a more detailed analysis of the scattering problem, based on Rice's

(1951) perturbation method, Barrick (1972) obtained an expression for

the echo power spectrum (actually an expression for radar cross section

per unit area per unit frequency) that produces a sideband structure

more in accord with observations. An approach similar to Barrick's

provides the starting point for the research presented here.

A. Motivation

Measurements at a single radio frequency [Tyler et al, 1973, 1974]

have indicated that radar techniques can provide an order of magnitude

improvement over conventional oceanographic methods in the determination

of the directional distribution of ocean wave-height spectra; however,

such techniques have utilized only the discrete Bragg lines to obtain

this information. Because these lines represent radio-wave scattering

from a single ocean-surface spectral component, multiple radio frequen-

cies would be required to obtain data concerning additional components.

The possibility of using the echo-spectrum continuum from a single radar

frequency to determine a complete directional wave-height spectrum pro-

vides much of the stimulus for this research. In some applications,

single-frequency coverage is a necessity. For example, remote sensing

of ocean surfaces with high-frequency radio waves that propagate via the

ionosphere is practical at only a few select radio frequencies that de-

pend on the time of observation and the particular area of ocean surface

to be covered. Additionally, at these high frequencies, the ocean waves

producing the Bragg lines are often not indicative of the speed of the

wind driving them (Appendix B) and, if remote tracking of wind velocity

is of interest, the sidebands, which are a function of the entire wave-

height spectrum (Chapter IV), become important.

2



The purpose of this research is to devrlop a theory to describe and

predi.t doppler or echo spectra (with emphasis on the continuum) and to

relate these spectra to the dynamics of the scattering surface. This

would provide the means to eventually obtain directional. wave-height

spectra from the complete radar echo.

B. Organization

The electromagnetic theory for scattering from the perfectly con-

ducting slightly rough surfaces proposed by Rice (1951) is developed in

Chapter II. The scattered fields derived from Rice's perturbation so-

lution to Maxwell's equations are applied to the Stratton-Chu integral

[Stratton, 1941J to obtain second-order integral expressions, in terms

of a surface-roughness spectrum for per unit area (or incremental) radar

cross section per unit frequency. The impact of finitely conducting sur-

faces on radar cross section is also considered. Chapter III presents

the hydrodynamic theory necessary to obtain a relationship for the sec-

ond-order wave-height spectrum in terms of first-order spectra. Because

of the nonlinearities in the ocean-surface boundary condition, perturba-

tion techniques must again be employed, this time in the form of Tick's

method (Kinsman, 1965). Some of the proposed first-order wave-height

spectral models are examined in preparation for the numerical evaluation

of the integral expressions for radar cross section. A model for swell,

which is expected to account for some of the unexplmined features in ob-

"served radar spectra, is also developed. Attention has been restricted

to deep-water ocean waves in which the effects of the ocean bottom and

shorelines have been neglected. Chapters II and III contain basic der-

ivations to accommodate the readers who are unfamiliar with either radar

or oceanographic disciplines.

In Chapter IV, the scattering theory developed in Chapter II is com-

bined with the hydrodynamic theory from Chapter III to produce second-

order integral expressions for the incremental radar cross section per

unit frequency for ocean surfaces. These expressions are interpreted in

terms of a double Bragg-scattering prccess, and a transformation of co-

ordinates leads to a numerically efficient method of evaluation.

3
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Calculations of radar cross section for several of the first-order

wave-height spectral models have also been included. Chapter V presents

comparisons between predicted and measured radar doppler spectra, and

Chapter VI provides a summary with recommendations for future research.

Appendixes A and B are computational asides, and Appendix C is a collec-

tion of theoretical doppler-spectra plots for various wave-height spec-

tral models.

C. Contributions

The maJnr contributions produced by this work are as follows.

(1) Second-order integral expressions have been derived for
the bistatic incremental radar cross section per unit
frequency for ocean surfaces.

(2) Efficient methods have been specified and developed for
evaluating the cross-section integrals.

(3) The relationship between the ocean-wave directional
propagation constants, Bragg condition, and doppler
theory that determines the sign of the doppler shift
produced by individual ocean-wave trains has been phys-
ically interpreted.

(4) Swell has been included in the analyses of second-order
p spectra.

(5) Theoretical and observed doppler spectra for known

oceanographic conditions have been compared in detail.
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Chapter II

ELECTROMAGNETIC SCATIeRING THEORY

The essence of any radar system is the ability of the system to

provide Information concerning a remote object or target, based entirely

on how the object scatters electromagnetic waves. For example, the dis-

tance from the radar to a target can be determined from the time required

for the radar signal to reach the target and return; the radial velocity

of the target can be deduced from the returned radio-wave doppler shift,

and its size can be estimated from the returned signal strength. The

cause and effect relationship between object and scattered electromag-

netic wave must be known, however, so as to relate a particular target

characteristic to a characteristic of the scattered radio wave. This

relationship is expressed by the radar cross section of the target.

Radar cross section a is defined as that area which, when multi-

plied by the power density in the electromagnetic field incident on the

scatterer, provides a power that, if reradiated isotropically, wouldf produce the actual power density at the receive location. It is the

connecting link between the physical attributes of the scatterer (such

as size, shape, velocity, and electrical properties) and the scattered

4 signal strength observed by the radar.

To understand this connection, consider a radar that is transmit-

ting power P through an antenna with gain G with respect to an iso-
T

tropic radiator (Fig. 2). The power density at an object some distance

R from the radar is

11R

B3y definition, the power

GP

t
4n1

if reradiated isotropically, results in a power density,

5



GPT
aX 222
(4M0 R R2

1 2

actually observed at the receiver a distance R2  from the target. This

power density multiplied by the effective area A of the receive an-e
tenna yields the radar received power PR,

GPTAe

kRR WO 2 2 2

As a result, the effect of the scatterer on received power is expressed

through the radar cross section a.

ANTENNA
EFFECTIVE

40 C _ ~twtREtý ARA9*, * TARGET • I•R2 •: REA

ANTENNA RADAR cRssIGAIN G 
SC

, "RECEIVER

TRANSMITTER

Fig. 2. RADAR GEOMETRY. Transmitting power PT' this radar would re-

ceive scattered power (PTGaAd)/(41RR R)2.

Generally, a is a function of both the radar-target geometry and
such target properties as size, shape, velocity, and electrical charac-

teristics; therefore, a single measurement of received power is not suf-

ficient to characterize the scattering properties of an object. Radar

observers, however, usually seek information concerning the physical at-

tributes of a target rather than its scattering properties. Although

complete scattcring properties may not be required to obtain the infor-

mation desired, they may not be sufficient either; nevertheless, it is

6



from these properties, partial or complete, that this information must

be extracted when radar techniques are employed.

The purpose of this chapter is to determine the sc.ttering proper-

ties, in the form of an expression for radar cross section par unit area,

:or slightly rough time-varying surfaces. Because the results obtained

here will be applied in Chapter IV to ocean surfaces, an equation for ra-

dar cross section is sought in terms of wave height, wavelength, and wave

direction. These parameters are of interest to the ocean radar observer

and are expressed conveniently in combindd form as wave-height direc-

tional spectra.

The cross-section derivations that follow are approximate and ob-

tained from first- and second-order perturbation solutions to Maxwell's

equations. Such second-order expressions in terms of wave-height direc-

tional spectra have appeared previously [Barrick, 1970]; however, these

v-•re valid only for monostatic or backscatter (radar transmitter and re-

ceiver colocated) and grazing-incidence (mean target surface and radar

transmitter coplanar) conditions; see Fig. 3a. Expressions valid for

the arbitrary-incidence bistatic geometries illustrated in Fig. 3b will

be derived here.

Section A discusses Rice's [1951] derivations for fields scattered

by a time-invariant slightly rough random surface. Section B uses the

Stratton-Chu integral [Stratton, 1941] to reformulate the Rice solutions

in a form suitable for the calculation of incremental (per unit area)

radar cross section. First- and second-order perturbation solutions for

radar cross section in terms of random-surface spectra are derived in

Section C. Sections D and E expand the Rice theory to include time-

varying and finitely conducting surfaces, respectively. The specifics

of ocean-surface radar cross section are described in Chapter IV after

a discussion of hydrodynamic theory in Chap er III.

A. Rice's Scattering Theory

1. Surfaces and Statistics

Because ocean surfaces appear to be both random and regular

(or periodic) depending on the height from which they are viewed

7



TRANSMITTER/RECEIVER a. Monostatic grazing-

SINCIDENT incidence radar
SNCATTERE RAY (transmitter and

,,---SCATTERED RAY receiver colocated )

TRANSMITTER

RECEIVER
INCIDENT b. Bistatic radar
RAY (transmitter and

SCATTERED r eceiver separated)

100

Fig. 3. MONOSTATIC AND BISTATIC RADARS. Grazing incidence occurs when
radar transmitter 4s pointed at horizon.

[Kins.-ian, 1965), it seems only natural that the masher tical model rep-

resenting them contains both features. Scattering such a model

(Fig. 4) for time-invariant surfaces has been a, ce. by Rice (19511.

Following Rice, the surface height f(x,y) is represpnted by

a double Fourier series with gaussian-distributed complex rant :ffi-

cients, where

f(x,y) = P(m,n) e-p[-ia(mx + ny)] (2.1)
mn

'Because up to eightfold summations will be encountered, the convention

of not repeating the F symbol for each sum will be maintained through-
out.

8



L ,.I f ( 1 , y )

•* Fig. 4. PERIODIC ROUGH SURFACE. The surface profile at any point
•) (XoYo) is duplicated at all points (xo~ + mL, Yo + nL), where
i L is the spatial period and m and n are integers from -• to

C0.

!• and

•* a = 2n/L (L designates the spatial period of the surface)

Si = NT

Fg Because the surface height must be real, it is required that

•k• where * denotes the complex conjugate.
g• Ocean wave-height measurements [Kinsman, 1965, + i. 71 indicate

Sthat a gaussian distribution closely r resents actual wave-height dis-

• tributions ; however, ther e obvious reasons why the actual distribu-

i tion cannot be truly gaussian. One impressive reason is the small but

finite possibility of encountering ocean waves several hundreds of feet
high, or higher, if the wave-height distribution is exactly gaussian.

Backed by measurements and compelled by the need to simplify the ensuing

mathematics, a gaussian distribution will be assumed.

trbuios;hoevrthrear ovou rasnswh te ctaldit9b



The statistics for P(m,n) are summarized [Rice, 1951] as

follows:

(P(m,n)) = 0 (2.2a)

(P(m,n) P(u,v)) = 0 (u,v) 14 (-m,-n) (2.2b)

(P(m,n) P*(m,n)) = (P(mi;n) P(-m,-n)) = W(pq) (2 . 2c)
L 2

whereIhr p = am = 21m/L

q = an = 2an/L

(.) = statistical average over the range of the argument for
fixed m,n

W(p,q) = surface-roughnqss spectrum

Cordition (2.2a), the zero-mean assumption, simplifies the

mathematics to follow without consequence to the results because each

pectral component of the ocean surface is assumed to have the same mean

level. Condition (2.2b), the independence assumption, is required for

the following arilysis but is not strictly valid for ocean su.faces.

The nonbreaking deep-water ocean-wave profiles of interest here deviate

slightly from true sinusoids [Kinsman, Ch. 5] and, therefore, contain

higher order harmonics having related amplitudes in a Fourier represen-

tation. Nonlinear wave-wave interactions producing related harmonic

terms also invalidate the independence assumption. Because a wave-pro-

file deviation from a sinusoid can be interpreted as resulting from the

wave-wave interaction of an ocean wave with itself [Stewart, 1974], a

single phenomenon can be considered responsible for the violation of
(2.2b). Fortunately, the effects of nonlinear wave interactions are

small (Kinsman, 1965, Ch. 13] and can be represented as second-order

perturbations to a first-order surface profile satisfying (2.2b). The

roughness spectrum describes only this first-order profile, although

second-order effects are examined in Chapter III and are included in

the final expression for radar cross section (Chapter IV). Condition

(2. 2c) requires a more quantitative explanation.
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C

The ocean wave-height spectra to be considered are obtained

as the Fourier transform of the surface-height autocovariance function

when the surface model is a wide-sense stationary process. The autoco-

variance of the Rice surface (2.1) is

R(x1 =x2 ,yly 2  (f(Xly 1 ) -f*(x•Y)

(I P~m~n) exP lie(mx 1 + ny1 )]

m'n

m''p*(mt nt) exp lia(m'x 2 + n'Y2)])

Because (P P*) -0, unless m = m' and n = n',

[ R(x,y) = R(x 1 - x2 P yl - Y2 )

- (P(m,n) P*(m,n)) exp{-iajjm(x - x2 ) +n(y 1  y2)]-

Use of the two-dimensional Fourier transform,

CO

f R(x,y) exp ia(mox + noY) d]dy

provides the surfaie spectrum

0O

W(mon)= > ýP(m,n) P*(m,n)) 1 ffexp{_ia[X(m +m) +y(n +n)]d dxdy

rnn (21c) -0o

The above integrals are expressions of the Dirac delta func-

tion defined in one form [Bracewell, 1965, p. 357] by

)f_ 11



00
& Wo e-ikx d5(k) = • dx

therefore,

W(m ,no) =0 (P(m,n) P*(m,n)) b(am + amo) 6(an + an)

17M-

If the double summation is treated as a double integral, then

W(mn) = ff(P(m,n) P*(m,n)) 8(p + po) 5(q + qo) dmdn
-00

where p = am, q = an, po = am0, qo = ano.

Changing variables from m to p, n to q, etc. leads to

W(po,qo) - (P(m,n) P*(m,n)) 6(p + po) U(q + qo) dpdq

which, with the aid of the delta-function sampling property, integrates

to

W(p,q) = P(mo,no) P*(mo,no)()21

for any po ane qo. Generally, then, the average of P(m,n) P*(m,n),

in terms of the surface-height spoctrum, becomes

(P(m,n) P*(mn)) = -- W(p,q)

t Details of the limiting process for transition from summations to inte-

grations can be found in many texts (Cheng, 1959, Ch. 51.
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Rice's roughness spectrum is seen to be 22 larger (one factor

of 2 for each dimension of the Fourier transform) than the surface-heighj

spectrum as defined by the Fourier transform of the surface-height auto-

covariance. To facilitate reference to Rice's work, the roughness-spec-

trum definition will be employed throughout the following derivations;

when the alternate definition is used, the differences will be noted.

2. Electromagnetic-Field Expansion and Boundary Conditions

V" An initial step in determining the radar cross section for the

surface in Eq. (2.1) is to relate the scattered electromagnetic field to

the incident field. This can be siliplified by assuming the surface to be

perfectly conducting. Although ocean-surfp.ce conductivity is not infi-

nite, it is sufficiently high for the effects of finite conductivity to

be expressed as a perturbation to the perfectly conducting theory (Sec-

tion E).

The incident field can be represented by a plane wave propagat-

ing in the x,z-plane (Fig. 5). Described by its electric-field vector

E exp[-iP(cK - yz) +iWt], the plane wave is considered either horizontally

S:Ev SPECULAR
• •INCIDENT RAY

RAY 1zeL eVy
ROG SURFACE

Fig. 5. INCIDENT FIELDS AND SPECULAR DIRECTION. Ev and EH are

vertically and horizontally polarized components of the incident
electric field.

13



polarized (E perpendicular to the x,z-plane) or vertically polarized

(E in the x,z-plane). Generally, E is a complex vector of the form

E a, where P is a unit vector in the direction of E, and E is a

complex quantity assumed here to have unity magnitude (FEI = 1). The

coefficients a and 7 are the sine and cosine of the incidence angle

9i illustrated in Fig. 5, and P is the free-space propagation constant

21cA, where. ?\ is the wavelength of the incident wave. The time factor

exp(iwt) will henceforth be assumed, where W is the radian frequency

of the wave.

Following Rice, the total electromagnetic field above the sur-

face is expressed as a sum of the incident field, fields reflected in the

absence of surface roughness, and those fields scattered because of sur-

face roughness. Waves reflected in the absence of surface roughness

propagate in a single direction (specular) determined by Snellts law

(Fig. 5). Waves scattered by surface roughness can propagate in all

directions, including specular, and will be referred to as nonspecular

scattered waves. Total fields are used at this point to satisfy the

boundary conditions at the surface. Later, scattered fields are obtained

by removing the incident field from the total-field expressions.

Because surface roughness is periodic in the x,y-plane (Fig.

4), the nonspecular scattered fields will also be periodic, with the

same period, in this plane and, therefore, can be expressed by a two-

dimensional Fourier series. Solving for the coefficients of this series

in terms of the roughness coefficients P(m,n) produces the desired

scattered-field expressions as a function of surface roughness.

For horizontally polarized incident waves, components (Fig. 6)

of the total field E(x,y,z) are

Ex = A E(m,n,z) (2.3a)
mn

Ey 2i sin 07z exp(-iavx) + B Mn E(m,n,z) (2.3b)
mn

E " C E(m,n,z) (2.3c)
m s4

: 14



INCIDENT

RAY
Ez TOTAL

Sa FIELDS

S••^SPECULA Ey X

S• • • @,NONSPECULAR

Fig. 6. TOTAL FIELDS ABOVE A SURFACE. The total electromagneticI " field at any point above a surface is a vector sum of the specu-
lar and nonspecular scattered fields plus the incident field.

- where

E(m,n,z) = exp[-ia(mx + ny) - ib(m,n) zJ (2.4)

and the summations are from -c to co.

To satisfy the wave equation VE + 0 = 0,

am 2 -2 n ) a1m2  +an <2

b(m,n) = 12(2.5)

{ a2m2+a2n2 _ 02)/ a2 2  2 2 2Sa a m + a n >

For b(m,n) imaginary, the negative root is specified to provide the

decaying, rather than the increasing, exponential solution to the wave

equation that E(x,y,z) must satisfy.

15
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The first term in the expression for E is the total fieldY
that would exist above a perfectly conducting flat plane. For any in-

cidence angle ei, this term can be written as

exp[-ip(O= - 7z)] - exp[-ip(Ox + yz)] = 2i sin (Tyz) exp(-ipC=)

incident reflected total

where a = sin ei and y = cos ei (Fig. 5).

To determine the Fourier coefficients A n, B mn, and C

the above term must be periodic, thereby restricting incidence angles

to the discrete values given by P sin ei = 2vv/L = av, where v is

an integer. Equation (2.3b) contains this restriction. For large L,

almost any desired angle of incidence is permissible. Later, L is

allowed to become infinite, thereby removing this restriction on ei•

These coefficients are found by satisfying the tangential electric-

field boundary condition to order 2 f 2(x,y); higher order terms are

neglected.

The tangential electric field at any point on the surface can

be written as

j-nG.) O (2.6)

where n is the unit vector normal to the surface at this point (Fig.

7), and 0 is the null vector. Expanded into its components, Eq. (2.6)

becomes

E -n (E n +E n + E n )=
x x xx yy zz

E In (E n x+ E n + E n )=0 (2.7)
y y xx yy zz

E -n (E n + E n + E n )=
z z xx yy zz

The unit normal components can be written (Sokolnikoff and Redheffer,

1958] as

16



4;

nx = -f(1 + f 2 + f2)

n = -fy( + f~x + fI (2,.8)

to x and y and =r asue fo +e of od)

y

to x and y and are assumed to be of order f.

Enorm- (n.[tot) Etot

UNIT NORMALI- Itan = Etot -norm

Fig. 7. FIELD COMPONENTS AT SURFACE BOUNDARY.

Writing the first two boundary conditions in Eqs. (2.7) in

terms of the unit normal components and retaining only terms of order

f provides the boundary conditions to second order,

E +rfE =0
x x z

(2.9)
E +ff =0

y yz

Expansion of the field components in Eqs. (2.3) in increasing

orders of f at the surface yields

sin f37f = P7f + order (f )

17



E(m,n,f) = El - ib(m,n) f + ... ] E(m,n,o)
'K

A A A(1) + A(2) +
1mn mn ms

wher6 A(1) is of order Of and A(2) is of order 2 f 2 Similar
mn mn

expressions exist for Bran and Cmn. The boundary conditions (2.9)

for horizontal polarization now become

(A) + A(2) +f C [(1I (1 - ib(ta,n) f] E(m,n,o) = 0
mn

and

21 exp(-iavx) * -Yf + B (L ) +B(2) +f C -()[1 - <ib(m,n)f] E(mno) = 0
ur[ n mn y mn

mn

(2.10)

when terms of order 3 f and higher are neglected.

Equating separately the first- and second-order terms in

(2.10) to zero results in

" A(1 E(m,n,o) - 0 (2.11a)
mn

2i exp(-iavx) PTf + > B( E(m,n,o) = 0 (2.11b)
I mnn

mn
and

A (2) + f C(I) -ib(m,n)f A (1 E(m,n,o)= 0 (2.11c)
mn x mn urnjS xmn

2) + (1) ib(m,n) f B 1) E(m,n,o)= 0 (2.11d)

jmn y mn mnjmn

Expression (2.11a) specifies that A (n) 0, thereby leaving three
(2) (1) (2) (1)

equations and four unknown coefficients, A , B , B V and C

18



The additional equation required for the solution of these unknown coef-

ficients develops from the divergence theorem V. E = 0 which, when

applied to (2.3), provides

am A i) + an Ri + b(m,n) C = 0H ur inn mn

to each order i. Detailed solutions to these equations have been de-

rived by Rice (1951).

The coefficient solutions applied to the field equations (2.3),

with the incident field E (incident) = exp[-ip(Os-7z)] removed, de-y
termine the scattered fields at any point above the surface in terms of

the random-surface coefficients P(m,n). For horizontally polarized

incident waves,

E x -2ft E(in,n,z) I~ a 2(m - k) A Q(m,n,k,A)
nn kA

E - -exp[-i•(Ox + 7z)] - 20 - E(m,n,z)IiP(m - v,n)
i mn

+ I Ian- [) A b2 (k,)J Q(mn,k,l)I (2.12)
kj

• • E(m n z)
E = 2 ianP(m - v,n)

Tms

+ 3 (m[ 2 + n2  mk- n) - anb 2 (k,)] Q(m,n,k,l)
i• k•

where Q(m,n,k,l) P(k-v,A) P(m-k,n -A)/b(k,.), and summations are

again from -c to c.

A similar perturbation procedure applied to vertically polar-

ized incident waves yields
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E -y exp[-ip(Ob + 7z)] + 2 E(mnz) iOm- 0) P(m - v,n)
Mn

+ [a2 - k)(v - k) + Cam) b 2 (k,)] Q(m-n~kX)

E= 2a • E(mnz){i lP(m- v,n)

+ I1 [a(n - ,)(v - k) 4 - Qb 2 (k,X)] Q(,n,k,j) (2.13)

Ez= a exp[-ip(Co + 7z)] +2 2mn

• [a (m- v)p + 2(mn)] P(m-v,n) + [a 3

k X

+ a c(m 2 + n 2) mp] b 2(k,A)I Q(m,,nik,.E

Expressions (2.12) and (2.13) represent the scattered fields

above a slightly rough surface in terms of the surface parameters and

are the desired results from Rice's theory. The price paid for these

expressions is the restriction to slightly rough surfaces (Pf Pfx, Ofy
y

must be small compared to unity). An analysis carried to order (Pf)

: V is required to estimate the error in these second-order results; however,

such an analysis will not be undertaken here. Instead, measured and pre-

dicted radar-received powers will be compared in Chapter V to determine

the validity of the second-order theory.
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B. Stratton-Chu Integral

The previously derived expressions for scattered fields, 12.12) and

(2.13), assume a surface of infinite extent with plane waves incident on

the entire surface. Most practical radars, however, have limited cover-

age and only portions of the total target surface may fall within this

coverage. It is convenient, therefore, to describe the scattering prop-

erties of such large surfaces in terms of a radar cross section per unit

area. The fields scattered from a finite surface area must be known.

however, to determine this incremental radar cross section. Te trans-

formation from infinite to finite surface-scattered vector fields was

first derived by Stratton and Chu [Stratton, 1941, pp. 464-4701 and,

henceforth, will be called the Stratton-Chu integral.

The startin point for this integral is a vector form of Green's

second identity. Let V be a closed volume (Fig. 8) bounded by a sur-

face S, and let P and Q be two vector functions of position which,

along with their first and second derivatives, are continuous throughout

V and on S. Applying the divergence theorem to the vector P X V X

and expanding the volume integral yields the vector form of Green's first

identity,

f V. XP V X4) dv f (V X . V X - • V X V X Q) dv

f f (P XV X Q) • n da (2.14)

where n is the unit normal to the surface S. Interchanging the roles

of P and Q and subtracting the resultant integral from (2.14) leads

to the vector form of Green's second identity,

f (Q VX V x P P xV X Q) dv =1 XV x - X V XP -nd
V f

(2.15)
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UNIT NORMAL

INCEMETAL SURFACE S

Fig. 8.* VOLUME V BOUNDED BY SURFACE S.

Lec P i and Q = a~, with~ a^ an arbitrary unit vector and 0

a scalar function, Require 1Z to satisfy the wvave equation,

V Q + W -LQ

and E to s'dAlsiy fiean7eilWs equations,

r; x E iw='

where

p±,c = permeability and permittivity of the volume material

J = current density

p - charge density

w = radian frequency

Under these conditions, Green's second identity becomes

I ¶ 22



f -iw~iJ + dv = -iwtiG'X W) + (nX F) x V0+ G .~V03da

(2.16)

Now consider a source-free volume enclosing a small sphere about

the point (xt,y',z') as illustrated ir Fig. 9, where the sphere has a

surface S Iwith a unit normal n.. Equation (2.16) then becomes

fS (-iwgdn X R) 0 + (ii XE) X VT + (-n E V01 da

+ f [-iwa(-n I xH)o + (-n IxE) xV'D + (n I . E)VI$] dal 0

S-i1

When the radius of the sphere tends to zero with 0 = e-p /r, where
2 2 2 2
r = (..-x') +(y-y t) +(z-z') and =21(/,\, Stratton has shown

thtthe sufc nqrloe is -I ft(' yt I zt). Because the

point (x',y',z') ca eayhr ihnV h -il taypoint

in V can be written as an integral over the surface fields,

I' (2.17)
UNIl NORMAL TO S

IV SPERE WITH
VOLUME V 1 'SURIFACE, S1

ENCLOSING
.. F`POINT ('y''

Fig. 9.* EXTERNAL POINT ENCLOSE BY VOLUME V.
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Now, let V be the hemisphere enclosed by S + S1 (Fig. 10) and

let the radiu8 of the hemisphere extend to infinity. From Eq. (2.17),

fields at -tiy point above the x,y-planes can be calculated if they are

known on S1 and S. For convenience., n is directed into the volume

wirth no effect on (2.17).

-X (, RADIUS GOES TO CO

VOLUME V

URFAC

Fig. 10. HEMISPHERICAL VOLUME WITH TWO-PART SURFACE. The
surfa,.e enclosing V is composed of a finite S and an
.nfinite S1. Nonzero ftelds are assumed only on S.
'e'•s at point (x',y' z') are the result solely of

fields on S and charges on contour C arising from

discontinuities in the fields between S and S

S•'-p ý assuming that the fields on S1 are zero and performing the

integr&zi of (2.17) over the finite area S violates Green's theorem

7. condition that the fields must be continuous over the entire surface.

Discontinuities in the tangential fields result in surface current den-

siti.s at the points of discontinuity. Only by accounting for these

discontinuities can the fields above a finite surface be made to conform

to Uaxwell's equations. Stratton shows that the integral

1•i V• H •dc

over the contour C enclosing the surface S is the term that must be

included in (2.17) to make the interior fields consistent withMaxwell's

24



equations and to account xor the field discontinuities along C. In-

cluding the contour integral in (2.17) produces the result obtained by

Stritton,

~~ I ~E(x','z' C-iwg(n X H) c1 + (n X E) X V(D + (n . E) V7OJ da

S-I

4 fiw VO •dc (2.18)

Two modifications render (2.18) more convenient for the calculation

of E(xi,y',zt). The first changes the contour integral to a surface

integral through Stokes's theorem; the second changes the mixed-field

expression to one in terms of E alone.

Consider the contour-integral portion of (2.18) in component form,

H dc + ~ f dc +a d (2.19)U -. th
where a are unit vectors along the j Cartesian axis. In this form,

Stokes's theorem,

C V. dc (VXV) d•s= (V XV) _ndsHC -'S

can be applied to the vectors 6,/0x H, •/6y Hi, and 30/dr H, where

V is any vector and n is the unit normal to the surface element ds.

The partial differentiation of 0 is simplified when r is ex-

pressed in the geometry of Fig. ii; then,

= exp(-ior) - exp[-i%(R - p)] (2.20)

r r

where

S= (sin e cos o a + sin e sin 0 a"+ cos e a)
x y z
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TO (x~y',z'

4,

>SCONTOUR "

Fig. 11. GEOMETRY FOR CONTOUR INTEGRIAL.

2 2 2 2
R =x2 + y2 + zt

The vector p is the radial vector describing the position of the ele-

mental surface area ds on the surfa:e S,

x=x +y + za (2.21)

y z

Combining Eqs. (2.20) and (2.21) yields

S= exp(-iR ) exp[ip(x sin e cos O + y sin0 sin 0 + z cos e)]R (2.22)

where, for large r, lettiLg R = r in the amplitude of 0 has a

negligible effect. From (2.22) the partials of 0 can be obtained as

-- i = •i sin 0 cos 0 0 = ipxD
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i~ s ine0 s in 0 1= y

1=PCos = 0 = iz

i'i] ~Applying Stokes's theorem to the x-component of the contour integral

gives

- 1 f 1~ ~ dH dc= i 6 T; I \wz79nd

= 41rwe f × * •nds

S(VM X 1i) * n ds + V(V X R) •n ds

(2.23)

Similar expressions exist for the y- and z-components of the contour

integral and combine with (2.23) to produce the total-vector contour

integral,

41iwe fV 41 (we fs (2.24)

where V X H = iwjE (one of Maxwell's equations in time-harmonic

source-free form) replaces V x H in (2.23).

With the following auxiliary relationships,

(VO x H) n = -( x H)X VO

V= i30
(2.25)
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'Eq. (2.24) can be incorporated into the total-field expression (2.18)

to yield

L("~l 4nRe (nXi)i XEi) X + (-n X R)

e ds (2.26)

which is the Stratton-Chu integral rewritten as a single-surface inte-

gral. It expresses the field, at any point (x',y',z'), caused by the

fields on a given surface S, where S may be only a portion of a

larger surface. Rice has conveniently provided expressions (2.12) and

(2.13) for the scattered fields everywhere above a slightly rough sur-

face. These fields, when evaluated at the scattering surface, can be

used in the Stratton-Chu integral to obtain the field E(x',y',z') seat-

tered from a finite portion of the surface.

F subtle but important point concerning the Stratton-Chu integral

is -'-t the scattering surface need not be the surface over which the

integration is performed. For example, the fields derived from Ricets

theory can be evaluated at any surface; however, no matter where evalu-

ated, they remain the fields caused by the scattering surface. As a re-

sult, a surface convenient for the integration of (2.26) can be chosen,

the fields scattered by the slightly rough surface can be evaluated at

this new surface, and the Stratton-Chu integral then applied.

A convenient surface in evaluating (2.26) is one contained in the

z =0 plane; then, n = a andz

It nXHf -Ha +Ha
yx xy

yx xy

Using Maxwell's curl equation for electric field

V x = -iw
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H can be expressed as partial derivatives of E,

(

H I 6E 6E\

1 /x ~
1 7 -; - 7 _

HHW

Substituting these components of H in (2.26) results in an integral

expression to which the E-fields derived by Rice can be applied directly,

e+i8 cose +E cosAe
7R' fx X x y zy

S(Ex sin cos + Ey sin'e sin +) Z]

sE sn e cos 0 E -- y- sine sin z)

s e cos + sine sin 0 a + cos i ds

IS x y z

(2.27)

This equation plus (2.12) and (2.13) are the tools to be used in deter-

mining per unit area radar cross sections for slightly rough random sur-

faces.
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C. First- and Second-Order Radar Cross Sections

The following discussion is the first of three in which the radar

cross section per unit area for a slightly rough surface is derived. At

this point, the surface is still perfectly conducting and motionless.

Later (in D and E), the time-varying and finite-conductivity aspects of

the rough surface will be described.

1. Radar Cross Section as Power-Density Ratios

Radar cross section has been defined as that area a where,

when multiplied by the incident power density Si, provides a power
asi that, if reradiated isotropically (aS /4AR2) would produce the

actual power density S at the receiver a distance R from the tar-

sa
ge.As an equation,

S =- (2.28)

For time-harmonic electromagnetic waves, time-average power

density S is used;

1 xe( × d*)
2

when electromagnetic fields are expressed in complex form. For waves

propagating in homogeneous media with permittivity E and permeability

ýi, E and H are in space quadrature with E = 4pj H; therefore,

S= Re(EH'*) -=2j72

V2
From (2.28), the radar cross section becomes

2 IE 12

IEi2
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If the scatterer is a surface of size L X L, the radar cross section

per unit area becomes

2 IE 1/L

Because only cross sections per unit area are considered henceforth, a

can be used to represent them without confusion.

To be consistent with Rice's work, the incident-field magni-

tude is taken to be one; then, a becomes

I2
L2

A field scattered from the slightly rough surface described

in Section B is a random variable, and an average radar cross section

a can be defined, where the average is taken over all possible rough

surfaces of the same class. Later, when time-varying surfaces are in-

troduced, E is generated by an ergodic random process in which the
s

time-average power is equated to the statistical average power, and the

notation returns to a rather than a. In either case, the quantity

(E E*) must be calculated. For a time-invariant or static surface, the
I.s 5

average radar cross section is

a= 4VR (2.29)

2. Scattered Fields from Rough Surfaces of Finite Extent

The fields to be used in the radar cross-section equations

presented above are found by performing the Stratton-Chu integration of

Rice's field expressions over a planar surface of size L x L, where L

is allowed to be the same as the period of the rough surface defined by

Eq. (2.1). As a specific example, consider a vertically ?olarized
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incident wave (Fig. 12). The Stratton-Chu integral (2.27) requires that

the infinite-surface scattered fields (Eqs. (2.13)] and their partial

derivatives must be evaluated at the surface over khich the integration

is performed. Applying (2.27) to the x-component of the scattered field,

evaluated at z = 0, yields

(xt,yt zt) i• - (1 - 2 sin2 0 cos 2 0 + 7 cos eEx 41cR L/_

+I [b(m,n) - sin2 0 cos 2  ) + • cos e] E(m,n,o)
Tinn

Li(Am - P) P(m - v,n)

+ 3 {a 2 (m- k)(v- k) + ( M- cam) b2(k, J)} Q(mpnpkA)p
kj

+ a -b(m,n) E(m,n,o)IicmP(m - v,n)

mn

+ (n -2)(v k) caib (k,n ) Q(mn- kA,)]

k2

+3 ( 2 e 2  ~ i 2 e os ][E(m nflo]

Liýa (m - V) P + b2 mn P(m -v,n)

+ I~ ja3(k - v)(m2 + n - mk - n.)
kj

+i a (~m 2 + n 2) mp] b2(k,YA)} Q(m~n~kik~ e - dxdy

(2.30)
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rr
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S~P

(-L/2,-L/2,O) (L/2i-L/2,01

Fig. 12. SCATTERING GEOMETRY--VERTICALLY POLARIZED INCIDEN~T PLANE WAVE.

The integration of this equation can be readily performed because the

only terms involving the variables of integration (x and y) are ex-

ponential, exp(-ip=), exp(iý.T), and

E(m,n,o) = exp[-ia(mx + ny)]

where these variables are separable. The integrals to be evaluated are

-L/2f•/ exp[-ia(mx + ny)] exp[p(sin e cos x + sin e sin y)] dxdy

and

L/2

ff/ exp(-i9c) exp[p(sin e cos 0 x + sin e sin 0 y)] dxdy

The results of integration are the familiar sinc(x)=sin(x)/x

functions,
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L2• sn e cos am) L/2)] sin ( sine sin -an) L/2)

sinc(XR) sinc (YR)

(2.31a)

and

L2 [sin sin e Cos 0 P a) L/2)1 rsin ((P sines sin 0)14/2]
sin Le cos -4 a) L/2 J L (Q sine sin 0)1L2 7 J

sinc (XI) sinc(YI)

(2.31b)

The definitions XI, YI, XR, and YR allow th-e x-component of the

scattered field to be written in compact form,

E (x',y',z') =2ieim
x 4vR

L (1-2 sinn2 ecos 2 0 + 7cose) sinc(XI) sinc(YI)

+ [bm,n)(1 - sin2 cos2 0) +Pcos e

• sinc(XR) sinc(YR) EE terms]
NT x

+ •-ab(m,n) sin2 e sin 0cos 0
irn

yII sinc(XR) sinc(YR) FE terms]

[am(sin2 e cos an) + ini in in(cosin

sinc(XR) sinc(YR) CE terms] (2.32a)'
b(m ,n) z



where the CE terms], CE terms], and [E terms] are the coefficientsx yz
of E(m,n,z) in the x-, y-, and z-coiuponents of the scattered fields in

(2.13), respectively. The LE terms] are actually the coefficients of

E(m,n z)/b(m,n). From (2.13), they are

CE terms] = i(Cam - 8) P(m - v,n) + - k)(v - k)x kY,

+ ( a - aam) b2 (k,A)] Q(m,n,k,e)

[Ey terms] = icmP(m-v,n) + I [a(n - •)(v - k) c - anb2(k,9)]Q(m,n,k,.e)
kj

[E terms] = i (m - v) P + 2 (mn) P(m - v,n) + j a3(k - v)z k.9

S(Mi2 +n 2 mk-nY) P+ a (m2 +n 2)mo b2(k,1) Q(m,n,k,2)

The y- and z-components of the scattered field for vertically

polarized plane-wave incidence are obtained in the same manner. They are

2 ie(-i6R) L2

(xl,yfz) = iR 2 sin2 0 sin 0 cos 0 sinc(XI) sinc(YI)Ey 41rR2

+ > -b(m,n) sin2 e sinocos esinc(XR) inc(YR) [E. terms]
mn

+ a I [b(m,n)(1 - sin2 e sin2 0) + ,• cos el

sinc(XR) sinc(YR) [E terms] (2.32b)
y
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+>1 [an(sin e i 2 si -1) + am sin e sin Ocos 0
mn1

sinc(XR) sinc(YR) [E terms] (2.32b)
b (m ,n) z Cont.

and

Ez(X',ytz1) = 4pR L2 sin 0 cos 0 + a sin e cos 0 cos el

• sinc(XI) sinc(YI)

- sin e cos • + b(m,n) cos el
Mn

* sinc(XR) sinc(YR) [E terms]

- a sin e sin 0 [• + b(m,n) cos 0]
mn

* sinc(XR) sinc(YR) CE terms]
y

+ sin 0 cos 0 Lam cos 0 + an sin 0I1
mn

sinc(XR) sinc(YR) [E terms]} ( 2 .3 2 c)

L(m,n) z

Similar expressions result when the incident wave is horizontally polarized.

3. Polarized Components of Scattered Fields

Because power received from a scattered fiel• generally will

depend on the polarization of the receive antenna and of the wave
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incident on the scatterer, it is convenient to express the scattered

field in terms of polarized components. Incident waves have been de-

scribed as either horizontally or vertically polarized; likewise, scat-

tered fields can also be expressed in terms of horizontally and verti-

cally polarized components. In the spherical coordinates shown in Fig.
A

13, the direction a is perpendicular to the direction of propagation

a and to the plane defined by • and the z-axis. Scattered-field
r r

components in the a direction are horizontally polarized according

to the definitions used for the incident waves; similarly, field compo-
nents in the aA direction are vertically polarized.

.~ Or

II

ar

I

/ oI Ii

Fig. 13. SPHERICAL COORDINATE SYSTEM.

In terms of the Cartesian components of the scattered field

(Ex, Ey, and Ez ), the vertically and horizontally polarized compo-

nents (E0  and E ) are

Ee = E cos 0 cosO + E sin 0 cos - E sin e (2.33a)

and

E = -E sin 5 + E coss (2.33b)
7x y
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where E , E, anm E may be the result of either vertically or hor-
' z

izentally polarized incident waves.

Conz~deri~ng conly thcgw two ortAhogonal pollarizat,.ons rcsult-- i~n
foul rpcwsible -owbinations icr r-,dar cross section,

1W= vertical incident, vertical reflected

=VH vertical incident, horizontal reflectedIH = horizontal incident, horizontal reflected

wHV horizontal incident, vertical .reflected

Only a V will be calculated here (results for a HH will be presented

at the end of this section), but the same procedure used to obtain a,,
and a HH applies to the cross-polarized a VH and a HV as well.

4. Calculation of a

The average radar cross section o is derived in two steps,

using Eq. (2.29). First, the average (EoE*) is found, and then the
limit of (EoE*)/L2 as L goes to infinity is taken, thereby convert-

ing sums to integrals.

From the field components in (2.32), the vertical field E

according to (2.33a) is

E 2 ieoiR) L2
E 4R -2 (7 + cos e) cos 0 sinc(XI) sinc(YI)

A

+ cos 0 (• + b(m,n) cos O) sirc(XR) sinc(YR) CE terms]

B (2.34)

+ V ý sin 90 (f3 + b(m,n) cos e) sNin IR [Ey termsI

mn __ __ _ C

+ - cos e (am cos 0 + an sin 0) sinc(XR) sinc(YR) CEtrs_________b(m,n) Ez

iD
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With the abbreviated notation,

E E - [AA* . BB* + CC* + DD* + (A*B + B*A) + (A*C + C*A)e•E 47 2 R---2

+ (A*D + D*A) + (B*C + C*B) + (B*D + D*B) + (C*D + D*C)]

(2.35)

a. Zero and First Order

Zero-order terms are those products in Eq. (2.35) that

involve no random variables P(m,n): first-order terms have products of

two random variables. Because P(m,n) are zero mean and gaussian, the

product of three random variables averages to zero [Thomas, 1969, p.

64].
64 Only one representative term from each of the above com-

binations will be examined here. The AA* term involves no random vari-

ables and its average is

22

(AA*) + ( os07 cos 20 sinc 2(XI) sinc 2(YI) (2.36)

The A*B term is obtained from Eq. (2.34) and from the

definition of the [E terms] in Section C.2. When products involvingx

a single random variable are omitted (these average to zero), A*B be-

comes

SA*B - -- (7 + cos 0) cos 0 sinc(XI) sinc(YI) cos [ +b(m,n) cos 0]'2 1
mn

. sinc(XR) sinc(YR) [ [a2(m - k)(v - k) 8 + ( C - lam) b2(k,0)]
kj

Q(m,n,kl) (2.37)

Recall that

P(k - v,j) P(m - k, n - 2)
Q(m,n,k, 2) = b(k,D)
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and, by Eqs. (2.2), the relations k-v = -(mr-k) and X -(n-A)

must hold for a nonzero average; therefore, m = v and n = 0. Under

these conditions,

(Q(m,n,k,X)) = c2W(ak - avaX)

L 2b(k,X)

which leaves only the double sum over k and X. The terms in the sum

over m and n are evaluated only at m = v and n = 0 with the re-

sult,

b(m,n) -ýb(v,o) =

sinc(XR) -)sinc(XI)

sinc(YR) -- sinc(YI)

Relabeling the summation indices k and X as m and n, the average

of A*B can be written as

(A'B)= 2 (7 + cos 0) cos 2 sinc 2(XI) sinc2 (YI)(l + 7 cos 0)

S[a2(v - m)2 + ( C - cv)b2(m,n)] i2W(am-av,an)
Mn L2 b(mn) (2.38)

If b(m,n) is real, then (A*B) = (AB*); if b(m,n) isimaginary, then

(A*B) = -(AB*) and the AB cross terms cancel. All of the cross terms

involving A have this property.

The average of other terms involving A are similar. The

remaining self and cross terms take on another form and can be repre-

sented by a single example. Consider BC*, omitting factors involving

more than two random variables. Under these conditions,
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Il • BC* - cos 0 [ + b(m,n) cos ei sinc(XR) sinc(YR)[i(aam- -) P(m -v,n)]

rn

* a sin 0 [0 + b*(m',n') cos e]
Mtn'

• sinc(XR') sinc(YR')[-iOn'P*(ml -v,n')]

The random terms are

PI (m - v,n) P*(m' - v,n')

For a nonzero average, the conditions m = m' and n = n' must hold.

After averaging, the result is

(Bc*) = a cos 0 sin 0 (f + b(r,n) cos 0e

2 2II[ + b*(m,n) cos :] sinc (XR) sinc (yR)

i [(•((•a - •)it W(am -av,an) (.9

[ hn this case, (BC*) = (B*C).
To obtain the radar cross section per unit area, (EoE)/L2

Sis evaluated in the limit as L tends to infinity. From (2.35),

I.! (EE) 2•.,e Le L-R (AA* + BB* + ..

and the term-by-term evaluation is in the form of lim L2 (Xy*).
L-[ co



When evaluated in the limit, each of the three examples

considered provides results that can be interpreted physically and are

in agreement with intuition. The (AA*\ ter, in "n.36) can be rewrit-

ten as

2 2r _s sin [(rsine coso-pa)L/2) 2
lim L2(AA*) =lim V(,/+ cos e) Lin . sn sx-/ ]nL-4 = n'-) 00 +c L" sin e cos L- •a),/2

t L Lrsin ((P sin e sin 0)L/2)]2

L (P sin e sin 0)L/2 J

where sinc 2(XI) and sinc2 (YI) are given in complete form.

In taking the limit, the following (Thomas, 1969, p. 5871

can be used:

Ss in (XL/2)2
lim L•I XL2 " = 2t b(X) (2.40)

L--- .-

where 8(X) is the Dirac delta function. Although this equation is not

proven here, L -sinc2 has all the properties associated with the more

common functions whose limiting value defines the delta function. As L

tends to infinity, the limit in (2.40) tends to zero everywhere, except
at X = 0 where it tends to infinity. The integral of L. sinc from

-x to co is finite and has the value of 2A, independent of L.

Applying (2.40) to L (AA*) yields

lim L2(AA) t2 P2 ( 0) 22 = cos 20 8(sine cos0-a) 8(1 sin e sin0)
L-) co

(2.41)

By the sampling property of the delta function, this limit has a nonzero

value only under the conditions that

P s in e cos - =0

Ssin e sin 0 = 0
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I Because sin e is nonzero by the first condition, sin 0 must be zero

by the second; hence, cos ± = ±1. F.rom Fig. 12, both sin e and a
are positive, thereby limiting cos 0 to +1. The conditions for non-

zero (AA*) can be rewritten as

sin e =a

sin 0 = 0

cos 0 1
diec

According to Fig. 12, the above conditions specify the specular direc-

tion. This is not surprising because (AA*) comes from that portion

of the field scattered by a plane reflector.

The second example (2.38) contains a double summation

that becomes a double integral in the limit. Using the delta-function

definition of (2.40),

2 2 2 2lim L (A*B) = -41r2 y (1 + y ) 5( sin e cos 0 - •) 6(p sin 0 sin 0)
i L-+ o

CO

IT r - 2 21 ~p- a~q dpdq

(2.42)

where the limiting conditions

am ->p

an -- q

Sav -•3C

were used, and

CO 2 CO

W(am - av,an) dmdn W(p - fa,q) dpdq

as L-4•. Again, the contribution to the radar cross section is in the

specular direction only, but this time it is weighted by an integral of

the surface-roughness spectrum over all wave numbers, p and q.
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There is no entirely specular constraint in the third

example, (BC*). Equation (2.39) shows that, in the limit of large L,

there will be delta functions within the integrals; therefore, analyti-

cal integration is possible, using the sampling property of the delta
function.• First, formally taking the limit,

00

lim L(BC*) cos 0 sin 0 [8 + b(p,q) cos 09[ + b'(p,q) Cos 0]

x 5(p sin e cos 0- P) U(P sin e sin 0- q)[aq(ap - P)]

• W(p - fc,q) dpdq

and, then integrating,

22B* = 4 2 2 2
nim L2(BC*)= sin 0 cos0 (1 + cos e) sin e (axsinecos0-1)

L--4 co

• W(P sin e cos - fa, ý sin e sin 0) (2.43)

This example indicates that, generally, there will be scattered power

at any observation a'egles e and 0 (t, is, a nonzero radar cross

section). For a given sat of incidence and observation angles, however,

only a particular portion of the surface-roughness spectrum contributes

to this nonspecular power. Later, it will be shown that the components

of the surface spectrum cf.using the scattering in a given direction are

those that meet the conditions for Bragg scattering.

The average radar cross sections to zero and first orders

are found by applying Eq. (2.29) to all the average terms. For specular

reflection, the result is

-~ 22

a W = 41t272 6(p sin e cos f-3a) 5( sin 0 sin 0)

(2.44)

* i •(P -.J [ )2 +b2 (pq)7y[](pq) +b*(',) ] ( 2.44d
•f 1 -p -+ W(p - ('4,q) dpdq
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and, for nonspecular scattering,

-4 2
aV = 4gP(a sin 0 - cos 0) W(P sin e cos - a, P sin e sin0)

(2.45)

These equations represent the average radar cross section per unit area

(to first order) of a perfectly conducting slightly rough time-invari-

ant surface of infinite extent. Note that the roughness contribution to

the specular cross section goes to zero when the radio-wave propagation
Sconstant in the z-direction b(p,q) becomes imaginary. Physically,

this phenomenon corresponds to surfaces whose roughness scale is small

•I •compared to the incident radio wavelength; in other words, the surface

appears smooth to radio wavelengths longer than a certain value.

b. Second Order

The second-order terms are of considerable interest be-

cause they account, in part, for the sideband structure observed in ra-

dar echoes from ocean surfaces.

To determine the second-order contribution to radar cross

section, the average (Q(m,n,k,j) X Q*(m ,n',k 2,')) must be evaluated

for the various products in (2.35). In terms of the random variables

P(m,n),

(Q(m,n,k,I) Q*(mt,n',k?,2'))

P(k - v,j) P(m - k, n - 2) P*(kt - v,1') P*(m' -k' nt -

b(k,l) b*(k',2')

IIFor gaussian random variables, the average can be expanded [Thomas,

1969, p. 64] as follows:

(PIP 2 PaP 43 = (PIP2 )(P 3 P 4 ) + (PIP3)(P 2 P 4 ) + (PIP4)(P 2 P 3 )

-2 (PI (P2 ) (P3) (P4 )
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whert the Pi need not be independent. When expanded, the average

(QQ*) becomes

(P(k - v,) P(m - k, n - 9))(P(v - k',-2') P(k' - m', 2' - n'))

b(k,2) b*(kI,Xt)

+ (P(k- v,2) P(k' -m', 2' - n'))(P(m - k, n - 2) P(v kl,-,V))

b(k,2) b*(kI,X1)

+(P(k - v,2) P(v - k',-X'))(P(m - k, n - X) P(k' - n' 2' - n'))

b(k,2) b*(kt,2')

(2.46)

where P*(m,n) = P(-m,-n) replaces the conjugate terms.

It is not difficult to see why calculation of radar cross

section is limited to second order; the number of averages increases six-

fold in going from first to second order. The averaging process becomes

mechanical after the first or second term, however, so that consideration

of a representative term in (2.35) will suffice in demonstrating the

techniques involved.

Consider, for example, the BB* term in (2.35) and omit

the first-order contributions; the result is

BB* = cos + b(m,n) cos 01 sinc(XR) sinc(YR)

*k[a2(m -k)(v Q ) + (P3 - am) b (k.,)J Q(min~nk,2)}
ki

* cos 0 [• + b*(m',nI) cos 01 sinc(XR') sinc(YR')

[a m -k')(v-k') P+ ((3-cain')b2 kO Qmnt$Xf

kýt

k'2 2u'x

k2.47)
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El,
This eightfold summation can be reduced to something less formidable by

using the condition,

(P(m,n) P(u,v)) = 0

unless m = -u and n = -v. Applying this condition to the first term

in (2.46),

(P(k - v,2) P(m - k, n - 1))(P(v - k',-z') P(k' - m', 2' - n'))

b(k,2) b*(kt,21)

i imposes the following constraints on the summation indices. For the

first average,

k- v=k-m

2•=2-n

and, for the second average,

V - k' = min k

-2' = nt -

When combined, these conditions become

m - mt = V
i• I (2.48a)

n =nt =0

while k, 2, k', and I' are unconstrained indices. These conditions

SI"provide a nonzero result for the first term of (2.46). Index constraints

for the second and third terms are

n =nt

(2.48b)
k= in-k + iv

* 2' =mn-2+•
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and

k k'

(2 .4 8 c)

n -nt

The average of BB* is now performed in three steps by

evaluating the three terms in (2.46) under the above conditions, respec-

tively. For convenience, these separate averages will be denoted by

(BB*) 1 , (BB*) 2 , and (BB*) 3 .

When (2 .48a) is applied to BB* as defined by (2.47),

the summations over m, n, mt, and n' reduce to a single term, leav-

ing a fourfold summation over k, 1, k', and It. The result is

(BB*)I = cos 2 (• + P7 cos 9)2 sinc 2(XI) sinc2 (YI)

S [a2a(v - k) 2 0 + (- Otv) b2 (k,)l] i2W(ak - aval)
k,L, L2 b(k,J)

>..,[a2(v k') 2  + Om Gv)b2 (k',,)] i 2 W(ak' - av,al')

k' ,t L2 b* (k?,21)

2
The limit of L (BB*)I as L goes to infinity ic evaluated by the same

method used for first-order limits. The result is a second-order con-

tribution to the specular-direction radar cross section,

lim L 2I(BB*) + 72)2 ( sin 0 cos 95- a) 5( sin 0 sir 9)
L-4•4

x JJ ( - p) 2 + 72b2(p,q)][( •U- p')2 + 72b2(p,q?)]

W(p - e,q) W(p' - ' p pdq (2.49a)

b(p,q) b*(pl,ql)
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When (2.48b) is applied,

o s = cos2 0 (•+b(mn) cos 0] +b*(m,n) cosel sinc2 (XR) sinc2 (yR)
Inn

S> [a2 (m- k)(v - k) P + (- am) bb2(k,1)] 2 W(ak - av,al)

ki L b(k,.e)

* [a2(k - v)(k - m) D + (m - Om) b2 (m - k + v, n - A)]

2 W(am - ak, an - al)

L2 b*(m - k + v, n - A)

2
and taking the limit of L (BB*) 2 as L goes to infinity results in

"lim L(BB*) 2 = cos2 0 [E + b(p,q) cos e] [E + b*(p,q) cos 0] 4c2

L-+ oo -o0

U P sin e cos 0- p) UP sin e sin 0- q)

* j [(P -U)(~a -10lý+ (ni- p) b 2 (u'v)] [(u -fWa(u -P)
00

+ ( C - eP) b 2 (p - u + v, q - v)]

w(u - fU,v) W(p - u, q -v) dud 4

16 b(u,v) b*(p - u + v, q - v)

The delta functions in this expression allow analytical integration over

p and q. After integration, the variables u and v are relabeled

as p and q for consistency of notation with previous results.
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rlin (BB* -2= (1 + cos 2 9) cos 2 0 [ sin 9 COS 0 - p)

L400

+ U -asin ecos 0) b (p,q)J[ sine0 cos -p)(Pc p)

+ (1 -asinO cos o)b 2 (I sine cos O-p +Pa,P3 sine sin0 -q)]

(W(pp- a,q) w(P sin 0 cos 0-p, I sine sin -q) dpdq
b(p,q) b*(P sin e cos 0 - p + mca, Psine sin0-q)

(2.49b)

This expression represents a second-order contribution to the nonspecular

radar cross section. In Chapter IV, it will be shown that the roughness-

spectrum arguments in (2.49b) meet the conditions for double Bragg scat-

ter; that is, an electromagnetic wave incident at an angle sin (a) is

I Bragg scattered by those surface spectral components having wave numbers

p - P in the x-direction and q in the y-direction. These scatteredLI fields are, in turn, Bragg scattered in the (0,0) direction by the sur-

face spectral components of wave numbers ý sin 0 cos 0 - p in the x-

direction and P sin e sin 0 - q in the y-direction (Fig. 12). Expres-

sion (2.49b) is an integral over all surface spectral components that

meet the Bragg-scattering conditions for the specified angles of inci-

dence and observation.

When ( 2 .4 8 c) is applied, the third-term average of (2.46)

i becomes

24 00
lim L - Cos 2 (1 + cos2 e (2 sin e cos -p)( x-p)

L--4 oo 0

2

+ (1 - a sin 0 cos 0) b2(p,q) (2.49c)

W(p-flaq) W(P sin 0 cos0 -p, r. sin 0 sin , - q)

b(p,q) b*(p,q)
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The total average of the BB* term in the limit of large L is then

2 2 2 2lim L (BB*) lim L (BB*)l + lim L (BB*) 2 + lim L2(BB*)3
L--.> L-> O L-4 o-

When these averaging and limiting procedures are per-

formed on the remaining terms and cross terms in (2.35) and the results

are collected, the total field average lim (EeEe)/L required to cal-
culate the second-order radar cross section by (2.29) is obtained. The

final result to second order, including the zero and first-order terms

in (2.44) and (2.45), is as follows.

For specular reflaction:

O•W
4  

2 NO sin e co0 - a) (O sin 0 sin 0)

(2.50)

For nonspecular scattering:

2 (P•)I bpo q)O- ÷ 2 sin -s , W - 1

W(p- , q)w(,,co, b - p.q h b. eh--q) dpq (2.51)
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The same techniques employed to determine a can be82
used to derive a by evaluating li rn E\/ for incident hori-0 L-+ E 0 /

zontal polarization. The results are as follows.

For specular reflection:

2 22=•r, 4•b7(t 5 sin 8 os 0•-) 5(3 sin 0 sin 0)

Si -. i v f + b (p,q 4, W(p - Oq) dpdq

-b -b'T) -,,I)2A) pqd'd

SI Y2 2+ b2(',q' JJD -b( ]q +b2(pf dpdq dppdqp
b(plq) b*(p• ,ql)

(2.52)

For nonspecular scattering:

,c41 0 . cos .. 2 0Wun Coso s-.in e sin 0)

+ O- 0 c2 cos 2 [sin sin G 0co p) q - q coo r (13 sin 8 sinm - q) + coo Pb2 (p.032

b(p.q) b(p,q)

S÷sin 0 (P sin 0 cos 0 p) q - 04 1oo ( 0 sin 0 - q) + cos 0 b2lpq)+ b(p,q)

sin .(P - ft)(0uintehin0-q) q gcas0 (sinG slu0-q) + we 0(ftsiaO cos O-p,+Pa. U 0PIsOsn-a)1
b'(.si•e os 0-p p + , p.inS sin 0-q) 1

• V(p - 02(, q) V(W sinG 8 0 - p, 13 sin e - q) dpdq (2.53)

The above four expressions represent per unit area radar cross sections

* to second order averaged over the range of random slightly rough surfaces

defined by Eq. (2.1). They are valid for arbitrary angles of incidence

and observation but are restricted to static infinitely conducting sur-

faces; furthermore, they represent only the expected value of the radar
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cross section and would not necessarily correspond to the cross section

S$ measured fcr a particular sample surface.

D. Radar Cross Sections for Time-Varying Surfaces

A characteristic of radar echoes from ocean surfaces is the doppler

shift imparted to the incident radio wave by the motion of the ocean

waves. The scattering theory developed above for static random surfaces

is inadequate for predicting this feature and must be expanded to include

time-varying rough ,•urfaces.

1. Time-Varying Surfaces and Scattered FieldsI A natural extension to Rice's theory provides a model for ran-

dom time-varying surfaces. The surface is again a Fourier expansion with

random coefficients, but the expansion is now in time as well as in space.

With the time factor included, the surface determined by (2.1) becomes

[ f(x,y,t) = P(m,n,I) exp[-ia(mx + ny) - iwIt]

where T = 2V/w is the time period of the Fourier expansion and corre-

sponds to the spatial period L. The field expansions corresponding to

tthose in Section A are in the form of

E A AnI E(m,n,z,I)
mnl

where

E(m,n,z,l) = exp[-ia(mx + ny) - ib(m,n) z - iwIt]

The statistics of the time-varying surface Fourier coefficients

are

(P(mn,I)) = o (2. 5 4a)
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(P(m,nI) P(u,v,J)) = 0 (u,v,J) € (-m,-n,-I) (2.54b)

(P(m,n,I) P*(m,n,I)) = (P(m,n,I) P(-m,-n,-I)) = -2- W(p,q,wI)
L T (2.54c)

v.here tiic factor of 2 in (2.54c) is retained from the Fourier transform

over the time domain (see Section A.1). Although this does not follow

Rice's convention, it allows the Fourier transformation of the autocor-

relation functions, following the normal convention.

The procedure for matching boundary conditions and solving for

the coefficients of the field expansions in terms of the surface coeffi-

cients is exactly %he same as that for static surfaces. The resulting

field expressions are those previously obtained, (2.12) and (2.13), ex-

cept that P(m,n,I) replaces P(m,n), Q(m,n,Ik,I,J) replaces Q(mn,

k,l), and E(m,n,z,I) replaces E(m,n,z).

When the Stratton-Chu integral (2.27) is applied to the time-

varying version of the scattered field for vertically polarized incidence

(2.13), the 0-component of the field scattered by a finite surface be-

comes

2e (-iR) L2 o_ ' t
E0 4 -R cos 0 cos 9 sinc(XI) sinc(YI) e

A

+ cos0(0+b(m,n)cose]sia•i.AXO)sinc(YR) CE terms] *-I wI-W)t ikR

B

•isln.-"(wl-w )t 1klR

+ a [; si0ED+b(m,n) cos 0] sinc(XR) sinc(YR) E yterms] e o e

C

Cos nR(am cos t +an sik 1) stnc(Xa) sinc(YR)R)+~cseacs~n~Ob(m~n) [Ez trs

D

(2.55)
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'where kI = IwN-Pji and W is the incident radian frequency. Implicit

here is the assumption of a slowly varying surface, as can be seen by

considering the exponential term,

iW

E(m,nz,I) e o = exp -ia(mx + ny)- ib(m,n) z - i(wI - w) t]

To be exact, the factors b(m,n) and • should also be functions of I

because the electromagnetic propagation constant ý = w/c is really

(wo- Iw)/c, where c = I/4-4ý7 is the velocity of electromagnetic-
0

wave propagation. Radar observations of ocean surfaces, however, indi-

cate doppler shifts on the order of hertz for incident frequencies in

the megahertz regioln. As a result, (w - Iw) = w is allowed in the0 0

amplitude factors while the exact formulation for the phase terms (the

exponential terms) is retained. Fortunately, because the surface of

integration is taken in the z = 0 plane, the factor b(m,n,I) never

appears as a phase term.

2. a(w) Defined

Before proceeding further, the derivation of a useful expres-

sion from (2.55) for radar cross section must be considered. Because

the effects of surface motion appear as doppler shifts in the frequency

of the radar received power, it is convenient to express the per unit

area radar cross section as a distribution over frequency (a per unit

area radar cross section per unit frequency). The time-averaged scat-

tered power per unit area is replaced, therefore, by a power spectral

density per unit area O(N) in expressions for incremental radar cross

section. Hence,

2
C( 4M R E (2 (2.56)

where ', is radio-wave radian frequency.
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For a given function of time E(t), the power spectral den-

sity O(N) is the Fourier transform of the time autocorrel-'tion func-

tion R(T) [Thomas, 1969, Ch. 3], where

•(T) E= lie F1 E(t) E*(t + T) dt
T-.) 0

At T = 0, 9(T) = qR(O) = IE(t)12 where the bar indicates the time av-

erage.

By definition,

r =() = 2I1R(-) I 9f(T) eiW dT

As a check on consistency of definitions, consider the per unit area

radar cross sectiont ao0  where

a = a(w) dw

From (2.5") and the definition of T(M),

0 41R 2

o =O J g () e d'd&'
IEi I f-02 7E

When the order of integration is interchanged, the integral over w de-

fines the Dirac delta function given in Section A.1. Therefore,

a o denotes the per unit area radar cross section of a time-varying
surface while a designates static surfaces. Both are defined in
terms of time-average scattered power; however, the power scattered

from a static surface is monochromatic; the power scattered from a
[Vtime-varying surface is not.



4"

C0 = nR f Z(T) F)(T) dT 49R2 Et)2

2

0, IEI•

where IE(t) 12 represents the per unit area time-avc2age power in the0

scattered field. This expression for a is consistent with those for

a, the static-surface incremental radar cross section, defined in Sec-

tion C.1; however, time dependence is stated explicitly because the

scattered fields are no longer simple time-harmonic functions.

Equation (2.55), from which O(M) must be obtained, repre-

sents a stochastic process. If the time averages of all orders are

equal to the corresponding statistical averages, the process is called

ergodic. In particular, if the process is ergodic,

Z(T) = R(T)

where R(T) is the statistical autocorrelation function from which

O(M) can be calculated. For Eq. (2.55), R(T) = R(tI-t 2 ) = (E 0 (t 1 )
• *(t2 ))/L,.

E?2

Although ergodicity is generally impossible to prove for a

given process, there are times when it can be reasonably assumed from

4 the physical mechanism generating the process. For a homogeneous ocean

surface where the wind has been blowing steadily for a long time and the

wave-height statistics are independent of time, ergodicity is often as-

sumed for the random process describing surface height. The process

represented by (2.55) is taken to be ergodic by the argument that the

scattered-field statistics are generated by the scattering surface.

Assuming ergodicity, the radar cross-section expression (2.56)

becomes

.- . ZE(E.(tl E*(t))W

"(ul)= 4nR2  ( 2 (2.57)

22

where IEiI2 = a as before, and (EO(t 1 ) EO0(t 2 W i1(t1 -t2
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3. Calculation of 5W(W)

The derivation of aV(w), the radar cross section per unit

area per unit frequency, follows that of a, in Section C.4. The av-

erage (Ee(ti) Ee(t 2 ))/L2 is found, the limit is taken as L and T go

to infinity, and a Fourier transform places the result in the frequency

domain.

For time-varying surfaces and using the abbreviated notation

in (2.55), Eq. (2.35) becomes

Ee(ti) E*(t) = L4 {A(t ) A*(t 2 ) + B(t 1 ) B*(t 2 ) + C(t 1 ) C*(t 2 )4n 2R2

+ D(t 1 ) D*(t 2 ) + [A(t 1 ) B*(t 2 ) + B(tl)A*(t2)] +"1

(2.58)

r The averages of the various terms are calculated to zero, first and sec-

ond order as before.

4 a. Zero and First Order

The AA* term contains no random variables (zero order)

and is

2 2 2 2 iW (t -t 2)

(A(t 1 ) A*(t 2 )) = (y + cos e) cos 0 sinc (XI) sinc (YI) e

1 2 2

Taking the limit of L2(A(t 1 ) A*(t 2 )) as L goes to infinity produces

lim L2 (A(t 1 ) A*(t 2 )) = 4 2 e (Y + cos 2) cos 0 8(p sin e cos 9-f)

L-400

* 2

• sin e sin 0) e (2.59)
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Swhere T= t t1 2 and, from Eq. (2.40),

2 xLIim L sinc = 21cb(x)

The Fourier transform,

provide e dT

provides the power spectral density from the autocorrelation function

(2.59),

Z[RAA] = 41 227 2(O sin e cos -o pa) 5( sin e sin 0)

. WO - e dT (2.60)

where

RAA = lim L2(A(t,) A*(t 2 ))
L--> c

2Cos =1

2 2cos e =7

from the delta functions. The integral

1f.0 e'i(W'W°)T

is the Fourier transform of a constant (unity in this case) and is

b(W -W ) from the previous definition of the Dirac delta function. The
0

AA contribution to the power spectral density per unit scattering area

is then
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S

AA (W) = Z[R^^] = 42e2 • (sin e cos - Oa) B(Psinesin0) 5(w -w )

(2.61)

and represents power scattered in the specular direction at the incident

E radian frequency w 00

The addition of time variation to the slightly rough sur-

face does not affect the zero-order scattered power (power reflected from

a planar surface) except to specify its frequency. The total average re-

flected power is the same for both time-varying and static surfaces; for

the ti-,e-varying surface, it is [except for the multiplicative factor of

2 2 )-1] 00
or, equivalently,

Performing the indicated integration eliminates 5(w-w ) from (2.61)0

which then becomes identical to the average power term (2.41) for the

static surface.
"First-order terms contributing to power scattered in the

specular direction are derived from the cross terms involving A in

(2.58). As an example, consider the cross term

iW t
A(t,)B*(t 2 ) = - +(7 . cos e) cos $ sinc(XI) sinc(YI) e 01

I " cos 0 [O + b*(m,n) cos ei sinc(XR) sinc(YR)
MnI

i(wI-W)t 2  -ik R
.e e

[a2(m-k)(-k)ý + (O-c'm) b2 (k'•)Q*(m'nlkIJ)
kjJ

(2.62)
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where only those parts that produce first-order terms (product of two
random variables) have been included. The average of (2.62) is nonzero

only if

(Q*(m,n,I,k,I,J)) ;6 0

where

Q*(mnI,k,2,J) = P*(k - vj,J) P*(m - k, n - 2, I - J)

b*(k,j)

Under the restrictions on m,n,I, the first summation reduces to a sin-

gle term where, again,

b(m,n) -- b(v,O) =

sinc(XR) -+sinc(XI)

sinc(YR) -+sinc(YI)

The average becomes

+ o ~ o 2  2 2_ B (y + cos e) cos0 sinc (Xi) sinc(yi)(m + p7 cos e)

eiW (t 1-t 2  [a 2 2k2

0 ) _-

kMJ

213 W(ak - av,alwJ)

L2T b*(k,2)

When the limit of L2 (AB*) is taken as L and T go to infinity,

ak -. p

at -- q

wJ -61•
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and the summations become integrals over k, 1, and J. The variables

of integration are then ;:,anged to p, q, and 9 with the result that

lir (AB*) = -4v2P37 (1 + 72) 5(ý sin e cos0-a) 5(ý sin e sin0)
L,T-4 *

Se i0- p) 2 + 72b2 (p,q) W(p - p,q,Q) dpdqdSQ

-0 4b*(pq)

The Fourier transform of RAR yields another delta func-

tion in frequency,

(Aw) rR 2 = -23 7(1+72) 5(osinecos 0- •a) 5(osine sing) 5(w- W)
ADAB 0

2 2b2 W (p - Oa,q)

fff[ p)2 + 7b(pq)] dpdqd l

CO L b b*(p,q)

(2.63)

Again power is scattered in the specular direction but, surprisingly,

only at the incident wv,,e frequency although this power depends on a

rough, rather than plr-:ar, time-varying surface.

The remainder of the cross terms in (2.58) involving

A(t) are similar to (2.63) and, when combined as

a gW(W) = 41cR2 (()M + AB()) + "BA M "AC M +

determine the specular radar cross section per unit area per unit fre-

quency to first order,

62



aW((w) 4fp272 5(p sine cos pa) b(. sin e sin o) 6(w - w o)

(1 - 00i + 7b (p,qt

.+ W(p - f,q,9) dpdqdQ (2.64)

Lb(p ,q) + b*(p ,q)J I'~

The nonspecular radar cross section to first order in-

volves the terms in (2.58) that do not contain A(t). For example,

B(tI, C*(t 2) = cos 0 [E + b(m,n) cos 9) sinc(XR) sinc(YR)
mnI

-i(wI-w )tt ikIR

* i(com - p) P(m - v,n,I) e e

* -sin [p + b*(rat,nw) cos 0) sinc(XR') sinc(YR')Se in(Xn) iIc(Yl
m'n' I'

* iCan'P*(mt - v,n',I') ei(WI?30)t2 e -ik 1 R (2.65)

vhere only the first-order .,,rms are retained.

From condition (2.54c), a nonzero average requires

m = mt n = n' ,and I = i', thereby reducing the average of (2.65) to

(BC*) = sinocos 0 C[ +b6(,n) cos 91 EI +b(mf,n) cos 91 sine (XR) sine (YR)

mnnl

. C "iam p)expf-i(wI - w )(t -

S2t---3 W(aw - av,an,w:)
Tlý
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Taking the limit of large L and T and changing the variables of in-

* tegration as in the previous example gives

OD

lir L 2 (BC*) = 41t2 Jff cos 0 sin 0 [• +b(p,q) cos e0 [1 +b*(p,q) cos el
_L,T-- o -00

"UP sin e cos 0- p) U(P sin e sin 0 - q)

-i(j•-w )r

a •(ap -)e 0 W(p - fa,qQ) dpdqd.Q4

The delta functions are used to integrate analytically over p and q,

2 4( 22

lim L 2(BC*) = cos 0sin04 (1- +cos 2) 2asinesin0(a sine sin0 1A)
L,T---o

3 W(Dsinecos0-pac, Psinesin0,n) e dQ
00

= RBC

In Fourier transforming the above, the order of integration is exchanged.

For the integral alone,

II f W(P sin e cos 0 - p(3, P sin e sin 0,Q) e d]
too _oo

00

= Joo - 0 + w) W(p sin e cos 0- P, • siL e sin 0,j) c.
00

= W(D sin e cos p-a, p sin sin w,

The spectral density for the BC* term is then
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O c(W) V =2 cos 0 sin 0 1 4(l +cos2 0)2( sin e snin (asine sin -l)]

• W(P sine cos 0- 9, P sine sin 0, W -0 )

Again, the remainder of the first-order products in (2.58)

have timilar spectral densities and combine to determine the first-order

nonspecular radar cross section per unit area per unit frequency,

- (w) = 4n 4(a sin 0 - cos 0) W(P sin e cos 0- a, •'sinsin0, w 0 -w)

(2.66)

Unlike the specular cross section, the nonspecular cross section provides

for returned powers at othe. than the incident-wave frequency. Because

specular pouer contains a single frequency, specular scattering in this

case is also coherent scattering; the nonspecular power containing a

spread of frequencies is referred to as incoherent scattered power.

Ii
b. Second Order

Second-order terms for time-varying surfaces are derived

in the same manner as those for static surfaces except that the statis-

tical averages must be Fourier transformed. lecall that the second-or-

der terms are those containing the product of four random variables in

the form of Q(m,n,I,k,l,J) Q*(mt,nlI,kt,9,Jt). The average of QQ

is expanded into three terms as before,

i ~ ~~~~~(Q(M,nlI~k,I,J) •(i-ll~IJiJ)

(P(k-v,I,J) P(M-k, n-J, I-J))(P(v-kl, -L,-JI) P(kl-m', 61-nt, J'-'I))

b(k,A) b*(k',i)

+ (P(k-v'•,J) P(k' -ml, It -u', JI -I'))(P(n-k, n-A. I-J),P(v-k'.-i,-JI))

b(kf) b*(kVNI)

+ (P(k- Ve.,J) P(v- k'. -_' -J'))(P(u- X. n-•.t I-J) P(k',-'. A' Dn'.i J, -I'))
b(k,j b*(k',A(l)

S~(2.67)
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For nonzero averages in the first term, the index constraints are

mt =m = V

nt n =0 (2.68a)

C It =1=0

and are analogous to those of (2.48a) for the static surface. The con-

ditions for nonzero averages for the second and third terms are

m=m' k'= m -k + v

n =n' '= n - (2.68b)

I It J= I -J

and

m =m' k k'

n=n' (2.68c)

=I V J=J'

A typical term in (2.58) is evaluate,! t, illustrate the

technique used tc find the second-order time-varying radar cross sec-

tion. All second-order terms are similar, and theLr .verages are com-

puted 1v means of the three-term expansion (2.67). As in the static-

surface second-order example, the typical term is

i _-i(wI-wo)tI

B(t 1) B*(t 2 ) =2 cos •0 b(m,n) cos ]sinc(XR) sinc"YR) e ot
!2

eikIR > [a2(m k)(v k) • + (P cam) b2 (k,D)]

kAJ

•Q(m,n,l,k,6J) (2.69)
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cos 0 + + b*(m',n') cos el sinc(XR') sinc(YR')

i(wI'-w )t2 -ikitR
* e e

* [a 2(m, k')(v -k') + ( C - m') b 2 (l2

Q*(mt,nt,I,ktiAt,J') (2.69)

Cont.

The three averages corresponding to the three terms in (2.67) are de-

noted as (BB*)I, (BB*)2 , and (BB*) 3  and are evaluated by using the

conditions stated in (2.68).

Applying condition (2.6 8 a) to the average in (2.69) yields

2 2 2 2 2 0

(BB*E) cos a +(1 +7 cos e) sinc (XI) sinc (YI) e

I • k 2 [a2(v - k) + (P -( av) b2 (k, J)]

*[a 2(v - k,) 2 , + ( tv)b

W~ak -av,a2,wJ) W(ak' - av,a2',wJ')21

b(k,e) b (k 2At) T

The limit of L (BB* I as T and L go to infinity is taken as be-

fore. Fourier transformation provides a delta function in frequency

because of the eiW'r term, and the result
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2 4 2 2
P (1 + ) ( sin e o 0 - a) ( sin e sin 0) (wo- w

Eri 4 0

IffNj [P -p) 2 + y b (pq)][(tfa -l) 2 + y2b (pl~qt)]

W(p - Pa,q,a) W(p' - fPcq',Ql') dpdqdQ dptdqldat ( 2 .70a)

b(p,q) b*(p,q)

is a second-order contribution to the specular radar cross section.

Applying condition (2.68b) to (2.69) and averaging provides

(BB*) 2 = cos 2 0 [• + b(m,n) cos 0] [ 4- b*(mn) cos e1
mnI

2 2 -i (wI-w )'

* sinc (XR) sinc (YR) e

[a 2-m k)(v -k) + Mm) b 2 (kO)l
k1J

• [a2(k - v)(k - m) + (-Oam) b2(m - k + v, n - 2)]

32
W(ak - aval,wJ) W(am - ak, an - ai, wI - wJ) (2,0

b(k,2) b*(m k + v, n - )TL

In the limit of large L and T, a sixfold integral is encountered;

however, the sinc functions become delta functions and two of the inte-

grations can be performed by inspection,

•" 1 \ _• 2r 4( 2 (92 foo
rnm L4 (BB* /2 = cos . ( + cos ) _ e
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*ff sin 6 cos 0-P)(Pa -P) + (1- a sin e COB 0) b 2 (p~q)]

""[(p - [)(p - f sin e cos 0) + (1 - a sin e cos 0)

21b (P sin 0 cos -p + a, • sine sin 0- q)

• W(p- Y,,qD) W(psinecos -p, fsinesin -q, •,-•) dpdqdf2 d9'

b(p,q) b*(sin e cos -p + a, B sin e sin 0- q)

Fourier transformation yields the delta function 6(61 -w +w) which
allows analytical integration over W'. Thp re :ult is

2 2•BB2(o 4 cos O •(l÷cos2 e)2

* fi [~sin e COB 0-p)(Pa-ýp) + (l-cisinecos$ b (p,q)jJ

[(p - a)(p - p sin e cos 0) + (1 - a sin e COs 0)

t* b2 (p sin e cos o - p + pa, p sin e sin 0 - q)]

W(p-Pa,q,Q) W( sinecos0-. 3sinesino-q, w% -w-0)

b(p,q) b*(3 sin e COs 0 - p + oa, f sin 6 sin 0 - q)

* dpdqdil (2.70b)

To find the third-term average (2.68c), the procedure is
the same as for the second-term average. After averaging, limiting, and

transforming,
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2 4 2 2BB3(W) =Tcos 0( + cos e)

((2 2
* . • L~ sin ecoso-p)(a-p) + (1-asinecos.0) b (p,q)j

W(p- fa,q,n) W(p sinecoso-p, •sinesinO-q, w -w--Q)

b(p,q) b*(p,q)

* dpdqdR (2.70c) A

As in the static-surface case, (BB*)I contributes to

the specular cross section, and (BB*> 2 and (BB*> 3  contribute to the

nonspecular cross section.

order in the manner described for B(t 1 ) B*(t 2 ), they are combined and

used in (2.57) to arrive at the second-order radar cross section per

unit area per unit frequency. The radar cross sections to second order

"" (including zero- and first-order terms) are as follows.

r:

Coherent:

M•( ) , 4 ney27 (a sin 8 0oo - 0a) B(a sin 9 si n 0) b(•o - )

S• I - + 7b(p.q * Vip- 2,qnfl) dpdqdfl

2~[(p 02) 2 b(pM2

4 -y 2(p~q)*[P + 7b2(p. ql)

. < 1 . ,, ,.,1<, ,,<,..,.,

w(p - f"qg,f) W(1' - p o' f ').dqd' (2.71)
Sb(pq) b*(p lIqt) 7
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Incoherent-

aV ne4 
U(CZ sin 6 - cs 2)2 v(13sin e cos 0 -ga, 0 sin e sin 0. - w)

4 r~2 2
+ FOT (13p s in e -p cos 0 - J sr. 0(pa - p)- (a asin 0 coo 0 b (~)

b(p,q) b*(p,q)

(+ sin e-p cog 0- sin 0) ~-P) -(al sin 0 - cos 0)b2

[(~aneos0.Pcco0(~..)..si_1 (asizae-oos0)b (Painecoso-.pa,. psinGsiua0-q)]

L b*(13 An cox 0- p+ Oa, ~sin 0 sin 0 - q)

W~ a ,0 ( i o ,0sn0sn0q - w-A) dpidqdi (2.72)

The derivation of a H(W) is similar to that for 01vW)M,

and the results are as follows.

Coherent:

~ ~.D[2 + b 2(p~q)][7(1 + I W(p - Pa,q,11) dpdqdlf)

4 [q2 + b ip,q j 1q, + b (p~q,) b(p,q) b*(p'*q') ddqf

(2.73)
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Incoherent:

a(tw).•42co2 o-2•W(3 pin. o.0•- a-sinh$n 0.. W w)

+ 1ff .g n0 () . " co.0- -gcog 0 (3 gin 9 sin q-) + o.s 0 b2 (p..)1 2

b(p,q) b*(p~q)

coi (pmin sin 0 - q) + co: 0 b2(pq)•L

[...no ,(p.W.siO.,.,-q gc, s , 1o.,(•.l no-l., , co.,b2(Poine. O -o. ,, P.o . , ,,}b(.,esin. iO.., qL b*(pO (sin8 n~s -p+M i 9sn0-q

I .W(p - 0a, q, fl) W(t -sinn 0oo po sin sin 0 - q, wo - w -f ) dpdqdfl (2.74)

Expressions (2.71) through (2.74) for the second-order

bistatic-radar cross sections per unit area per unit frequency for a

slightly rough time-varying surface are the major results obtained in

this chapter. They represent radar cross sections in terms of the sur-

face-height directional spectrum and will be used in Chapters IV and V

to analyze ocean surfaces.

E. Effects of Finitely Conducting Surfaces

For smooth surfaces, the difference between fields reflected by a

perfect conductor and those reflected by a good conductor are small,

except at vertically polarized grazing incidence; Jordan (1950, pp. 621-

623) provides examples of these differences in the form of dipole far-

field radiation patterns. Vertically polarized waves propagating along

a finite conductor are continuously attenuated by ohmic losses until, at

large distances from the source, they are no longer detectable. No such

• •attenuation occurs along perfect conductors. On the other hand, tangen-

tial bounary conditions cause horizontally polarized fields to vanish

at grazing iscideice for both perfectly and finitely conducting surfaces.

Pbr the slightly rougl. surfaces considered hcre, the assumption of

perfect conuctivity causes a singularity in the expressiofns For the

sc:attered field. As might be expect(ed, this sitilultarity is ;as-,(ciated

with radio waves propagating along the surface; however, both u W ind
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I4,

aHH exhibit singularities because of depolarization caused by surface

roughness.

When b(p,q) = 0, (2.71) through (2.74) become singular, surpris-

ingly, at all angles of incidence and observation. By the definition in

(2.5), b(p,q) represents the z-component of the radio-wave propagation

C constant for a wave in which p and q denote the x- and y-components

of propagation, respectively; therefore, when b(p,q) = 0, propagation

occurs entirely along the x,y-plane or mean scattering surface. For fi-

nitely conducting surfaces, however, there is always a component of prop-

agation directed into the surface to provide for ohmic losses (Fig. 14)

and, as a result, the z-component of prouagation cannot be represented

entirely by b(p,q). In Chapter IV, the radio wave defined by p,q, and

b(p,q) is tdentified as the intermediate scattered wave associated with

double Bragg scattering; consequently, it can assume grazing propagation

independent of the incidence and observation angles.

Including the effects of finite conductivity in (2.71) through

(2.74) not only allows evaluation of a. and cm, but also provides

a more realistic scattering model. For good conductors such as sea water

and only slightly rough scattering surfaces, the effects of finite

z 2z

E 2

Fig. 14. PROPAGATION ."GLNG A FINITE CONDUCTOR. Ver-

tically polarized waves propagating along a surface
of finite conductivity are tilted slightly towtrd

the surface, thereby providing a component of prop-
agation into the surface. Power Hlow intlo( the str-
face accounts for ohmic losses arising P'rom rtield-
induced currents flowing in the r'nite conductor.

73



conductivity are most apparent at vertically polarized grazing propaga-

tion. Under these conditions, deviation from perfect-conductor theory

is explained by the small component of wave propagation directed into

the surface. The equations for a and aHH are modified by replac-

ing b(p,q) with

b(p,q) + 6Pz

where b•z represents the z-component of the propagation constant for

grazing conditions (b(p,q) = 0]. The substitution is justified only

if 8Pz is small compared to b(p,q), except near grazing propagation.

The procedure used here to determine 8bz follows that of Jordan

(1965, pp. 204-207). A vertically polarized plane wave propagating

along the interface between air and a finitely conductiag smooth surface

is assumed (Fig. 14). There are no variations in the y-direction; vari-

ations in the x-direction are designated by e-7°1x in the air and by

e-71X in the conductor. Variations in the z-direction are to be deter-

mined.

The following are Maxwell's equations in source-free time-harmonic

form.

C
In air:

7 + - -iW0 Hy

C. 7 0 Hy iw 0Ez

- 0 = i6Ex (2.75a)

Within the conductor:

x
x- +7Ez = iwlHy
7T =

- 7Hy =(ac + iwI) Ez

a c 1 x (2.75b)
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where e and g represent the permittivity and permeability of the

* media. Subscripts o and 1 refer to the air and conductor regions,

respectively. Conductivity in region 1 is ac" Combining these ex-

pressions produces the following results.

In air:

/?B 2 2 \
62 (70 + 20oeoI Hy (2.76a)

h h2

0

Within the conductor:

ý2H
iwe) 2 H (2.76b)

2
hI

The solutions to these are as follows.

In air:
hz -h z0 o

Hy =cle + c2e

Within the conductor:

hlz -hlz

Hy ce 
Ic

4 e

jc 2
Taking the positive square root for h requires c1  and c4  to be

zero for finite fields to exist at z = co in air and at z = -- in

the conductor.

Including the x-variation in the expressions for Hy yields the

following results.
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In air:
$

-hz -7oX
Hy =c2e e

Within the conductor:

h 1z 7i 1x
Hy=c 3e e 1Hy 3.

C These expressions must be equal at the iterface z = 0 to maintain the

continuity of Hy; therefore, c2 = c3  and yo =y.

From Maxwell's equations and the expressions for Hy,

K In air:

hoc2 -hoz -7oX
E =-ze e

x iwe
0

C
In the conductor:

-h1c2 hlz -7ox
Ex U - e e
x ac + ,).l e

Again, for continuity of fields, the two expressions for Ex must be

equal at the interface; therefore,

222
S= = h(i z2

S (a + 2ii)
c

SFor sea water with conductivity a c 4.0 mhos/m and perm ittivity
E1•0.72 x 10-9 F/m,

'2 c I

at the radio frequencies of interest (less than 30 MAIz); then,
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4

I •h° ib %. s iO(l + i)

0 211C

where w = ,oiio is the radio-wave propagation constant in air, and

G Po - P1 is assumed.

Using the expression

S= (I + i)Zs2c

C, c

[Ramo and Whinnery, 1953, p. 239) for tie conductor surface impedance

results in the simple form,

Z2 Z =PA-- (2.77)

where ¶ = is the characteristic impedance of free sp...e, and

A represents the normalized surface impedance of the conductor. At 30

MHz, the normalized impedance for a smooth ocean surface is A = 0.0144

(1 + i). For a smooth perfectly conducting surface, the z-component of
the propagation constant can be written as

b(j,•• = • cos 6

" CThe angle 6 at which p cos 6 = I5Pzj is 88.80; consequently, b5z
is small compared to b(p,q), except near grazing propagation (6 =
90*). Barrick (1971) has calculated the increase in ocean-surface im-

pedance caused by roughness and indicates that the total normalized

surface impedance is still small compared to b(pq). Although the

modifications to (2.71) through (2.74) are slight in this case, they

are sufficient to allow evaluation of a. and a•H.
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Chapter III

$ HYDRODYNAMIC THEORY

A theory was developed in Chapter II for electromagnetic wave scat-

tering from a slightly rough surface, resulting in expressions relating

incremental radar cross section per unit frequency to the scattering

surface-height spectrum. In this chapter, the ocean surface is examined

to determine the salient features of its surface- or wave-height spec-

trum.

In Section A, the equations of motion and boundary conditions re-

quired to describe the ocean surface are developed and found to be non-

linear. Because of the boundary-condition nonlinearities, perturbation

techniques are employed to solve the equations of motion, again only to

second order. The result is a surface-height spectrum composed of first-

and second-order terms. The first-order spectrum is the superposition

of sinusoidal waves, each of which obeys a wave equation and a first-or-

der dispersion relationship. The second-order spectrum is a result of

the nonlinear interactions of the waves in the first-order spectrum.

In Section B, Tick's perturbation method [Kinsman, 1965, p. 588]

is expanded to three dimensions, and a second-order wave-height spectrum

is derived in terms of a general first-!order spectrum. Section C pre-

V sents some of the first-order wave-height directional spectra that have

been postulated for ocean surfaces. A model for ocean swell is proposed

in Section D.

A. Equations of Motion and Boundary Conditions

The development of the equations of motion and boundary conditions

presented here follows that of Kinsman (1965, Ch. 2).

1. Equation of Motion, Continuity Equation, and Velocity
Potential

The development of the equation of motion begins with Newton's

second law of motion,
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du= +f (3.1)
dt p g

where u is the velocity and f and f are pressure and gravityWit;forces per unit mass (Fig. 15). Other forces associated wgith fluids
(such as friction, surface tension, and Coriolis) are neglected because

they have little effect on the 2 to 400 m ocean wavelengths of interest

here [Kinsman, p. 23].

d-u TRAJECTORY

GRAVITY
C- FORCE • PRESSURE FORCE

Fig. 15. FORCES ON A UNIT MASS.

The total time derivative of a component of u is written asI ,du •u •u uu
x x x dx x dy + x dz

-t- t + x at + dt -7--

or

du 6u du Ou ou
7 + X + uy -j- + uz -N-

The time derivatives of the y- and z-components are similar and, when

these three components are combined, the total derivative can be written

Sin vector form as

du -1

d = t -(it'2 V(u • U) + (V / u) xU
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where V is the gradient opekator and VX is the curl operator.

The uressure force in (3.1) i obtained by consideringa small

volume of fluid bx, by, 5z with pressure p at its center (Fig. 16).

VI
G!

ax PRESSURE p AT CENTER

88:-
A - P;xa 8

Fig. 16. PRESSURE ON A SMALL VOLUME OF FIJID.

The force in the x-direction is the difference between the force at the

face with x-coordinate -* 5x and at the face with the coordinate 1 5x

"with respect to the center of the volume. The pressure at the first face

is

1 p CSp

and, at the second face, is

p + 8X

The force is pressure times the area of the face; therefore, the total

force in the x-direction is

C0

(p- 29 -x +p 2 Z; -)

Force per unit mass is simply force divided by the total mass pxibybz,

81)p
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e

where p is the fluid density. The total force per unit mass is then

- 1

p p

If the z-axis is aligned with gravity, then : = "ga z where az is

a unit vector in the z-direction.

For fluid motion, Newton's second law becomes

+. +(Vx U) xu-UVp-ga (3.2)

If the vorticity V X u is zero, the fluid is irrotational. Generally,

fluid motion is irrotational if it results from conservative forces. In
deep water with small surface viscosity, the effect of vorticity on over-

all wave dynamics is negligible [Phillips, 1966, p. 36]; therefore, ir-

rotational fluid motion will be assumed.

In addition to the equation of motion, there is the continuity

equation

6 P (pux) (pu ) 6(puz)

+ -p+ - + + 0

Because the total derivative dp/dt is

dp =6 +3 + ydt + 6p _

the continuity equation in vector form becomes

1 dp + V • u = 0  (3.3)
p dt

which can be derived by applying the law of conservation of mass to a

small fluid volume similar to that in Fig. 16.

From, the continuity equation, V • i = 0 if the fluid is in-
compressible (dp/dt = 0). Sea water is nearly incompressible and can
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be so assumed with insignificant effect on the surface-wave dynamics of

* interest. These incompressible and irrotational properties will permit

the use of scalar functions rather than the velocity vector in the der-

ivation of second-order wave-height spectra.

From the irrotational condition V X u = 0, u can be written

as the gradient of a scalar because

V x (V(P) 0 o

C In fluid dynamics, q is the velocity potential and is related to U by

--vp = u (3.4)

The minus sign originates froa an alternate method for deriving (p;

namely,

b- = jb u ds

aa

where s defines a path from a to b. When •p b is path indepen-

dent, both the irrotational condition and (3.4) will result.

(i cIf the fluid is incompressible, tben from (3.3),

"* u=0

L (and q) obeys Laplace's equation

V2 q = 0 (3.5)

SC' The velocity potential and (3.5) will be used to derive tho second-order

wave-height spectrum.

2. Wave Equation

If the second-order terms and the effect of pres!ýure force are

neglected in the equation of motion (3.2), the result, in ccnjunction
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with the continuity equation, will require that the ocean-surface pro-

file must obey a wave equation

1 2 ¶j(X,Y,t)(36
V~I- y 1t) 6t 2  (3.6)

where TI(x,y,t) is surface displacement from some reference (Fig. 17),

and C is the phase velocity of the propagating wave. The general so-

i• lution to the wave equation is a sinusoid traveling at phase velocity C.

As a result, ocean-surface wave-height spectra will contain sinusoidal

components, each obeying the wave equation. A complete solution requires

the imposition of boundary conditions. These constraints, written in

CI terms of the velocity potential, will be combined with Laplace's equa-

tion to obtain a second-order wave-height directional spectrum as a

function of first-order spectra whose component.s obey a first-order dis-

persion relationship.

.Zt

TIME tI
z=11 (x,t,)

XOK0  -
WAVE PROPAGATION

TIME t2
z :q (N,t 2)

x0+C( t2 -t 1)
C'

Fig. 17. WAVE PROFILE IN ONE DIMENSION. As
time passes, the wave profile appears to be
rigid and to move with velocity C.
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3. Boundary Conditions

The boundary conditions for ocean surfaces are of two types--
fixed and free (Fig. 18). A fixed boundary, such as the ocean bottom,
has no component of velocity perpendicular to the boundary. In terms
of velocity potential, this condition is

&6T = (3.7)

where the rigid boundary is a plane perpendicular to the z-axis at a

depth h.

z

AIR
FREE BOUNDARY AT z mi) N y,t)

z=O--

WATER

h
FIXED BOUNDARY AT z -h

Fig. 18. FLUID BOUNDARIES.

There are two free-surface boundary conditions--kinematic and
dynamic. The kinematic condition requires surface fluid particles to
remain at the surface. If points on the surface are represented by
n(x,y,t) and if z is the position of a particle, then

dtz - =(xyt)J 0
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which states that the position of a fluid particle relative to the sur-

face profile or height must remain constant for all time if the particle

is on the surface (z = i1. When expanded, this expression becomes

, -u .U u =0

In terms of velocity potential,

U Y y

• C and the kinematic boundary condition becomes

+ (3.8)

The dynamic free-surface boundary condition requires that fluid

at the surface must also conform to the equation of motion (3.2). Under

the condition of irrotational motion, (3.2) becomes

+ l I -ga (3.9)+÷ V(u.* i = -- p a

C, which, in component form, is

2- -

- t+ i (u • u) = - -O + t y P Oy
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P

where u has been replaced by -V• in the time derivative. Multiply-

ing the first expression by dx, the second by dy, and the third by

dz and summing the results produces

d_ + 1 (Cu i)] + gdz 82 (3.10)

where

d (i da + -db + dc +

is the total differential operator. Assuming a constant density p and

integrating (3.10) yields

S- + 1 (Cu • + gz + F(t) = (311

where F(t) is a constant of integration that can be absorbed in (x,

y,z,t).
The dynamic boundary condition can be obtained by evaluating

(3.11) at the surface z =

gn = _ I [= (3.12)

where u is written in terms of the velocity potential c. Overlying

atmospheric pressure is assumed to be zero because interest is not in

wind-generated waves but in wave-generated or second-order ocean waves.

The boundary conditions (3.8) and (3.12) are expressed as sca-

lar functions, a nice feature; they are also nonlinear which is trouble-

I (• some in that it requires resorting to perturbation techniques to find an

approximate rp(x,y,z,t) to satisfy the conditions in (3.7), (3.8), and

(3.12).
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B. Second-Order Wave-Height Directional Spectrum

The results obtained above will now be combined to determine the

effects of nonlinearities (wave-wave interaction) on ocean-surface wave-

height spectra. The analysis is carried to second-order and results in

a spectrum that is a nonlinear function of first-order spectra. As a

consequence, the rough-surface radar cross-section equations in Chapter

II can be rewritten as functions of first-order wave-height direz-

tional spectra and still contain the effects of ocean-wave nonlineari-

ties to second order.

1. Tick's Method

The following analysis is based on Tick's second-order double-

perturbation method [Kinsman, 1965, p. 588] expanded to three dimensions.

To be consistent with Tick's formulation, the velocity potential is de-

fined by u = Vp. Changing the sign of qp and using subscripts to in-

dicate partial differentiation reduces the boundary conditions (3.7),

(3.8), and (3.12) to (where subscripts denote partial differentiation)

qz -)0 as z -)-o (3,13a)

+ +z= I (3.13b)

Sg¶ + •t + I + 2 + = 0 (3.13c)

Deep water is assumed by allowing the rigid boundary to recede to -w.

The first perturbation in Tick's method results from expanding

p(x,y,z,t) in a Taylor series about the point z = 0,

9p(x,y~z,t) = P(xy,z,t),Izj--

+ ,.9)(xY..z.2t). 2 t (xYV9 z 2+..
Iz02 z=O) (3.14)
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Substituting this expansion into the kinematic and dynamic boundary con-

S ditions (3.13b) and (3.13c) and retaining only terms to second order in

qp and Tj provides

-- + . (3.15a)

:T + ItT + (P2x + (P) = 0z +(3.15b):

'P+ + +pt + + = o

from which j can be obtained to second order by noting that, to main-

tain the expression to second order, the third term in (3.15b) requires

knowing n' to first order. Condition (3.15b) defines Tj to first or-

C der as

(1) 1() I
=- •tIz=O

where the superscripts denote the order. Consequently, q to second

order is

1 =- 2 + + + 2 ] (3.16)
9 9 2 x y z =O

This expression can now be differentiated with respect to x, y, and t,

separately, and the results can be substituted into the kinematic bound-

ary condition (3.15a) for nxT ,y and t To second order,

•tt + g'z = pztptt + pz.ttpt) - 2px~t -2(• -yyt - .pzpzt + ptZz L

(3.17)

This partial differential equation contains both the kinematic and dyna-

mic boundary conditions and is written completely in terms of the veloc-

ity potential function. It is to be solved under the constraints cf

laplace's equation (3.5) and the condition stated in (3.13a). When q
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is found from (1".17), the surface displacement ti follows directly from

* (3.16). The Foirier transform of the autocorrelation function of n will

provide the desired surface wave-height spectrum to second order.

The second perturbation in Tick's double-perturbation method

results from solving (3.17) to first order in c) and then using the

first-order solution to obtain a second-order solution. To first order,

(3.17) is

S+ g, z = 0 (3.18)

Normally, when solving differential equations, a general form for the

solution is assumed and the original differential equation plus any aux-

iliary equations are used to determine the complete solution. The first-

order term in (3.16),

g= (3.19)

suggests a general form for p. Because rj was represented bya Fourier

series in Chapter II, a series solution in the following form is sought,

cP(xyzt) = A(m,n,l,z) exp[-ia(mx + ny) - iIwt]

mnI

f Applying Laplace's equation V•q = 0 to this series yields

ni [Azz (m,nIz) - (a2 m 2+a2 n 2) A(mn,I,z)] exp[-ia(mx+ny) - ilwt] =0

i-l

If this differential equation is to be zero for all x, y, and t, then,

A (m,n,I,z) - k2 A(m,n,I,z) = 0
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k2 22 22
for each term, where k = a 2m + a n , and the solution takes the

form of

A(m,n,I,z) = B1(m.n,I) exp(k mnz) + B2(m,n,I) exp(-k mnz)

The rigid-surface boundary condition

S-0 as z -4-•0

requires that B2(m,nI) - 0 for all m,n,I; therefore, with the sub-

script on B1 omitted,

(x'yz1t) = B(m,n,I) exp(kmnz) exp[-ia(mx + ny) - iIwt](3.20)

In
When this expression is applied to (3.19), the first-order wave height

becomes

(1) 1 _• 1/ (-iIw) B. (m,n,I) exp[-ia(mx + ny) - ilwt]
9 -- I

where the superscripts explicitly indicate the order. The B((mnI)

are obtained by equating the coefficients in this expression for (1

with those in the random-surface representation

(1) = P(mn,I) exp[-ia(mx + ny) - iIwt]
O= inn

-.ssumed in Chapter II. Combining the results with (3.20) provides the

first-order solution,

(1) - ig r(m'nI) exp(k z) exp[-ia(mx +ny) - iIwtI
mnI (3.21)
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which, when substituted into the original differential equation (3.18),

* yields

gkmn = (1w) 2  (3.22)

* and this becomes

2 2 2 2gk (k = p + q) (3.23)

in the limit of large L and T, where

am -- p

an -ýq

1w -. fl

The above expression is a dispersion relationship for first-order ocean

waves that obey the wave equation and, from it, the phase velocity of

ocean waves can be determined,

li--- k= = -+ (3.24)
CC

which is a function of the wave frequency i.

Returning to the search for Tj to second order, it can be
seen by rewriting (3.16) with the order explicitly denoted that a first-

Sorder solution for (p is not sufficient to determine q to second or-

der,

C ~(2) 1 _ (2) 1 (1~,~) + ((1) 1)~ + (q,(l))+(1)]}

(3.25)

where Ti (1) has been replaced by -(P /g from (3.19). The term (2)
thePt

requires that q be known to second order. Substituting the first-or-

der solution For rjp back into the original differential equation (3.17)
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provides 'Pit -Oi and q(1)= -gq z; therefore, the equation

to be solved for second-order p is

(1) (2) 1)(1) (1) (1))\I
cpt , =z -2 Px (rt + ; + zt )z=0 (3.26)

A general solution in the form of (3.20) is again assumed for p (2)

S•(2) (xJYtZtt) B IB(2) (m'nl) exp(k mnz) exp(-ia(mx + ny) - ilwt]

Substituting this solution into the left side of the differential equa-
c tion (3.26) and the first-order solution (3.21) into the right side

yields

u u i
(2 amn gP(mtIn),I-) iamtgP(",n itj)It) eu

m'n'I' 1Wi tI

12

= • amgP~','I')u >"1u

+mntt ang P(mtnwI)- e- • ian"gP(m",n",I") eu+ 2 ntgt IIWrtt mu t u"

-2 P(m',n',I') e ut igkinW itw it "• np
m jt m. t n" I"

(3.27)

where u = -ia(mx +ny) -ilwt, ut = -ia(m'x +nty) - iI'wt, etc. The
coefficients B (2)(m,n,I) can be determined by noting that the left
side of (3.27) is a Fourier series, and taking its Fourier transform

results in
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3 i-- ff B(m,n,I)(gkm -12W2
(2i3 mm

• exp -Pa(MO + m) x - ia(n + n) y - iw(I 0 + I) t] dydt

= I B(2) (mmn'I)(gkmn - 122) 8(m° + m) 8(n + n) 5(1 0 I)

(2)* (m n 1 2k 2

0 0 0) (9k00

The Fourier transform of the right side requires the use of the convolu-

tion theorem where, if X[x(t)] = X(w) and Z[y(t)] = Y(w), then

00Ix * y] =1 X(wO - w) Y(C) dw
C 

f

For discrete variables,

X(w - w) yMi) dw X(m0 - m) Y(W)
00 m

The convolution theorem on the right side of (3.27) provides

B(2)*'(M nmoI )( k 1 ~2 W2)

= -2 • am'g P*(m',nU,It) ia(mo)mf)gp(omt n -nt lo-l1)
mIm' i'0 0 0 0

-2 ' an'g P*(m Jntlf) ia(n -nt)gP*(mo-m 1 ,n -n',l -oI')

+2 _ P* In'w igk A'-no -
mtnIt gkmtnt I1w PI -n t ,no0n 0 , 0

€94



Dividing through by (gkmno -1 2 w2 ), taking the conjugate of both sides,
(2)and dropping the subscript o determines the B (m,n, I) which are the

(2)
coefficients in the series expansion for (2. To second-order, then,

k z
(2) 2 e eu

(P (x,y,z,t) 2ig 2nlg 22I a(gkmmn - I W 2]

a2m(m - m') + a 2n'(n-n') - kmtnk t
I [n' n'l'

P(m',n',I') P(m - m', n - n' I - I') (3.28)
I'w

This series can be verified as a second-order solution by substituting

((2) and ((1) back into the original equation (3.26). Replacing c(1)
and p(2) with (3.21) and (3.28) in the equation for (2) performing

the indicated differentiations, and evaluating the result at z =0 de-

rives a second-order surface height in terms of the random coefficients

of the first-order Fourier series,

(2) (x,y,t) -2g IW eu2

innl gk -W
inn

S• >1 [a2mt(m -mI) + a+2(n - n,) - kmnkn.. mn.n,]
in'n'I'

P(m',n',I') P(mi- mi, n - n', I - I')
I'w

+ P(m,n,I) eu km ,P(i,n',lt) eu

mnl m'ntt I9 (3.29)
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am P(mnI) eu 3 amt P(m',nf'I') Ut
2 Wm I itw

- • 3i an P(m,n,I) u 3 an m'n,I') u'
2 anw ' I e ant I- 'n11Imtnt~ t

+ k P(m,n,I) e u k P(m',ntI') eU'

mnl1 m'nI tntj Itw

(3.29)
Cont.

2. Second-Order Wave-Height Spectrum from 1 (2)

The second-order wave-height spectrum can be obtained from

(3.29) by evaluating the autocorrelation function

R(xl - x2 , yl - Y2' tl - t 2 ) = ('(xlyl'tl) 1*(x2,y2,t2)) = R(x,y,t)

(3.30)

and taking a three-dimensional Fourier transform. The transform over x

and y places *he spectrum in k-space; the transform over t places it

in the frequency domain.

Again, as in Chapter II, only a single-term example from

(3.29) is required to illustrate the techniques for calculating the

second-order spectrum. All product terms resulting from (3.30) will

contain the product of four random variables. Averaging over this four-

fold product requires the three-term expansions in Chapter II.C.4.b.

When the first term of (3.29) is used in (3.30), the fourfold a',,erage

to be evaluated is

(P(ml,n1,I') P(m - mt, n - nt, I - It) P*(mift,n't,Ittt)

•P* (m"- m , n"- n"' T"- I"')t (3.31)
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= (P(m',nt,It) P(m- m', n - n', I - I))

• (P* (m" I n "' ,I "' ) P* (m "' - m" , n " - n " , i" - I" )

+ (P(mt,nt,It) p*(m'ti,nt't,Iitt))

(P(m - mi, n - nt, I - It) P*(mttnettIntt)) (3.31)

Cont.

where the first term requires

m,n,I,m" ,n"t I" = 0 (3.32a)

( K for a nonzero average. The second and third terms have the following

index constraints:

m -mitt m = It

n I n n = nit (3.32b)

Ia = I sit I =I

and

i " m=m" m",t = inm im

n =n" n' = n -n' (3.32c)

I = I" I it = I - IV

Examination of (3.29) with (3.32a) applied reveals that the
f irst-term, average in (3.31) is a constant ; therefore, the corresponding

spectrum is concentrated at zero frequency. This term denotes a per-

fectly smooth surface and is consistent with the corresponding terms in

the scattering theory that represent scattering from a planar surface.

All averages of qn* with (3.32a) applied have the same form and will
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contribute to the specular radar cross section. These terms will not

* be considered further because the incoherent radar cross section is the

primary concern here.

Applying (3.32b) to (3.30), again for the first term in the
(2)

expression for i( yields
$

R 4g 2 (lw) 2 _ e-i•

= 2  (gk - I2w2) 2

S [a2m t(m - m') + a 2n'(n -n') - ktnkmMtn.nt]2

mtntjt n-

32 W(aml,an',I'w) W(am -am', an - ant, Iw - I'w)

LT/ (I'w) 2

C where the subscripts on R indicate which terms in (3.29) are averaged,

and

T= U.- x2 ) a + n(yI - y2 )a + Iw(t- t 2 )]

Taking the limit of large L and T and changing the variables of in-

tegration trom m,n,I to p,q,Q results in

4g2 f a2 -i'TI Rl(T) = 4g2  .e~ 2
R1.1-00 - S12)2

[P J 1'(p - pt) + q'(q - qt) - k ptqtkp-p ,q-q,]2

SW(p ,,q, tRl) W(p - , q - q', Q - Q dp'dq'dQ' dpdqd)

(4) 212

98
I



i

The first-order spectra in (3.33) indicate that two ocean

*waves contribute to the second-order spectrum for a given set p, q,

p', and q'. The propagation constants of these waves are

k pa x+ q'aA

A: 1 : (p p) (q 
eq 

)
from which

[p t(p - pt) + ql(q - qt) k kp t qk p-pt, q-q

in (3.33) can be rewritten as

C

W(p - i2, - q', 2)' d'q'a

where k1 = Jill and k e2 = b p2 1d
When all terms resulthng from the Fourier transform of (3.30)

are combined, the second-order ocean-surface wave-heiht spectrum be-

comes

w(2 (pjqjg) = 2 k- 1 +k 2 + (k Ik 2 -kil -"k2) T _ nt(n2W
f2-gk pq

•W(pt,q',ait) W(p - pl, q .qI, f_ i)dptdqtdflt

(3 .34)

where k pq= 4p'+q'. This expression can be simplified by enforcing

S~the dispersion relationship (3.24),

Under this condition, the first-order Opeotra, can be written as
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W(p ,q', ,t ) =W(pt ,qt ) 60(1 ± jg•)

W(p - p', q - q', W(p - pt, q - qt) 5(n - nt 2Jk

which, when substituted into (3.34), allows integration over a' because

of the delta functions,

W (2) (pLIS) k ~ ~ + kc2 + sgn(k11c2  k2 ) 2

•5(al + - w2 ) W(p',qt) W(p -pt, q -qt) dptdqtS~(3.35)

where w10=4~~ Ykl fgk, WB = 4gFt and sgn=l1 if the signs

within the delta function are the same and sgn = -1 if they are dif-

ferent. The second-order spectrum is seen to be composed of waves that

[t result from the nonlinear interaction between pairs of first-order waves

obeying the dispersion relationship.

In Chapter IV, Eq. (3.35) will be combined with the results

obtained in Chapter II to derive an expression for ocean-surface radar

- cross section that includes both electromagnetic and hydrodynamic ef-

fects to second order. First, however, some possible models for first-

order ocean-surface wave-height spectra will be considered.

C. First-Order Directional Spectrum Models

First-order spectra comprise the freely propagating ocean waves

that obey the dispersion relationship (3.23). They appear in the sec-

ond-order expressions for the radar cross section and directional spec-

trum derived previously and must be represented either empirically or

analytically if those expressions are to be evaluated. In the following

discussion, some of the proposed analytical models for first-order di-

C rectional spectra are described.
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For the spectra to be considered here, their directional and ampli-

tude aspects are assumed separable. For example, for waves traveling at

an angle 9 wibh respect to some reference axis (usually along the wind

direction), the wave-height directional spectrum can be written as

s(WG) = ON) G(8)

where O(M) is a nondirectional amplitude spectrum (W is the radian

wave frequency) and G(O) is a directional factor such that

$
o2c s(W,S) dO =O()

0

1. The Amplitude Spectrum

S. A. Kitaigorodskii [Pierson and Moskowitz, 19641 has postu-

lated that the dominant part of the amplitude spectrum O(w) is a func-

C tion of only four variables--wave frequency, gravity, wind speed, and

fetch (the distance over which the wind-ocean interaction takes place).
tIf an unlimited fetch and a saturated sea exist, the amplitude spectrum

becomes a function of gravity and frequency only,

O(W) = f(w,g)

In the MKS system, the units of O(w) are meters squared per

radian per second or meters squared seconds; therefore, the dimensions

are length squared time. To obtain thesp dimensions from w and g

only requires that

2

5

tA sea is saturated at some wave frequency if the height of the waves at

that frequency no longer increases with an increase in wind speed. At
saturation, these ocean waves cannot support additional wind energy, and
the excess energy transfers to the longer waves that are not yet satu-
rated.
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Adding a constant of proportionality results in

2

0() g e (3.36)

which is the Phillips saturation spectrum [Phillips, 1958]. Observed

values of the equilibrium range constant Pe vary between 0.8 X 10-2
and 1.48 X 10 [Phillips, lc66, p. 114]. For a given wind speed, waves

with frequencies below a certain cutoff yalue no longer develop. An of-

C ten used cutoff for (3.36) is derived from the point where wind and wave

speeds are the same. If it is assumed that waves cannot travel faster

than the wind driving them, then, from the dispersion relationship

(3.24),
C

g2

5 for _> g/u
¢(DW) = C (3.37)

0 for ( < g/u

where u is the wind speed.

With observed spectra as a basis, Pierson and Moskowitz (1964)

proposed the following form for the amplitude spectrum:

~,2

C 4(W) = Peg- exp V(W/W) (3.38)

where the Phillips saturation spectrum has been modified by an exponen-K• tial term whose value is a function of wind speed through w = g/u.

Figure 19 illustrates both the Phillips saturation and the Pierson-Mos-
-2

kowitz spectra for 20 and 40 knot winds when Pe = 0.81 X 10 and v -

0.74. In the Pierson-Moskowitz spectra, considerable energy can be ob-

o served in waves traveling faster than the wind that generates them; how-

ever, no known mechanism exists for the direct transfer of wind energy

to these faster waves, and it is assumed that they result from the
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- -- -- PHILLIPS SATURATION
SPECTRUM

-PIERSON -MOSKOWITZ
SPECTRA

• 40
"1 10 KNOT
c WIND

Cn

10-'

20
KNOT
WIND

10 7, . ! , I
0.4 0.8 1.2 1.6 2.0 2.4

WAVE FREQUENCY (rod/sec)

Fig. 19. PHILLIPS SATURATION AND PIERSON-MOSKOWITZ AMPLI-
TUDE SPECTRA. The cutoff frequencies for the Phillips
spectrum correspond to waves traveling at the indicated

wind speed.

nclinear interactions among slower waves. Although second-order waves

cannot propagate freely, third- and higher order solutions to the equa-

tion of motion predict resonant waves that grow with time and that obey

the first-order dispersion relationship [Kinsman, 1965, Ch. 131. Conse-

quently, first-order wave-height spectra contain all waves, wind driven
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or the result of wave-wave interactions, that obey this dispersion re-

lationship.

There are other forms for amplitude spectra [Kinsman, 1965],

but (3.37) and (3.38) serve as adequate examples.

2. Directional Aspects

Just as O(w) is associated with wind speed, the directional

aspects of the spectrum are often associated with wind direction. In
one of the examples to be considered, however, these properties are a
function of wind and wave speeds in addition to wind direction.

One of the simplest directional forms is semi-isotropic (Fig.

20), where

C1
-for (p-A/2 <8<p +A/2

G (G)=
0o otherwise

and Cp is the wind direction with respect to some reference. Combining
this G(O) with (3.37) provides the Phillips semi-isotropic directional

spectrum

•e2
Peg 2 for W > g/u and cp - /2 < E < (p + it/2

S (w,) 
(3.39)

C0 otherwise

A similar expression is obtained when th6 Pierson-Moskowitz amplitude

spectrum is combined with the semi-isotropic a.;sumption,

- exp 5(WC/W) for p n/2 < p +o/2

Ss(W,e) = E (3.43/)

0 otheri ise

105



WAVE DIRECTION WIND DIRECTION

p/ G (a) 0j

Fig. 20. SEMI-ISOTROPIC DIRECTIONAL DISTRIBUTION.
C

Another class of directional functions that allows S(Q),8) to

decrease gradually as 0 moves from the wind direction is represented

by

G(9) = cos (ac3) (j.41)

where 6 = 0 specifies the wind direction and N is a normalization

constant such that

f2cG(0) dO =1

In one form of (3.41), s =2, a =0.5, and -v < 8 < v; therefore,

1 2/8
G(8) = cos ) for -7 < 0 < it (3.42)

This expression represents a cardioid distribution (Fig. 21) which al-

Slows wave propagation in all directions except the one against the wind.

There is little evidence to indicate that this or any other function
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WIND DIRECTION

PROPAGATION DIRECTION
G ()/ cos. (0/2)

i Fig. 21. CARDIOID DIRECTIONAL DISTRIBUTION.

adequately describes the directional propagation of wind-driven ocean

Swaves.* It has been observed [Tyler et al, 1974] that waves do propagate

at angles greater than 900 with respect to the wind and, for this reason,

(3.42) is expected to be a better model than semi-isotropic propagation.
(: The exponent 2 in the cosine distribution has been used by others [Bar-

rick et al, 1974] and is chosen here simply for convenience. Equation

(3.42) will be combined with the Pierson-Moskowitz amplitude spectrum in

Chapter IV to illustrate the dependence of radar cross section on direc-

tional ocean-wave propagation.

In a summary of the evolution of the cosine form of G(8), Munk

[Tyler et al, 1974] introduced another form of the cosine type. His ver-

sion is a modification of one introduced by Longuet-Higgins, Cartwright,

and Smith (Tyler, 1974] where
Cs

G(9) = cos5 (8/2) -1 < 0 < i (3.43)
X(s) - -

and s is a function of ocean-wave frequency and wind speed. The argu-

ment is that lower frequency waves traveling at speeds approaching that
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of the wind should be confined to a narrow region about the wind direc-

tion, indicating large values for s. Higher frequency waves traveling

substantially slower than the wind are allowed a wider range, indicating

values of s vL- (Fig. 22).

WAVE PROPAGATION 4WIND.DRECTION
DIRECTION "-1

Sz

S G )cos(/2)

6 z IN(S)

Vt N(S)f G(e)de

Fig. 22. COSINE DIRECTIONAL DISTRIBUTION.

Munk expanded (3.43) to allow for a small amount of energy

traveling opposite to the wind and proposed a relationship between wind

speed, wave speed, and s. This modified directional function is

G(8) CE([ + (1 - E) coss (8/2)] -7c <8 <It (3.44)

N(s)

where c is assumed small compared to 1. The normalization factor N

is

N(s) = G(W) d8 = 2ge + (1 - e) L(s)
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where

L(s) 21 1•/2 r(js + 1/2)
Ms• + 1)'

and r is the gamma function.

In seeking a spread factor s as a function of wind speed u,

Munk accounts for variations in measured wind speed with anemometer

height by assuming a logarithmic wind profile such that

u(z) = U- in ( (3.45)

where

z = height at which wind speed is measured

IK = Karman's constant (0.41)

u* = Prandtlts shear-stress (or friction) velocity

and z is defined as0

2
A u (

C z =-K2 -g (3.46)

2

where A/K2 is Charnock's constant (r0.0156) and g is the accelera-

tion caused by gravity. Kinsman (1965, p. 560) provides a detailed de-

scription of the log profile and associated constants.

A given wind-speed profile can be characterized by the single

parameter u* if the logarithmic assumption is valid and if measure-

ments of u(z) are within the region of validity. Figure 23 plots
C2 u(z) as a function of u* for wind-speed measurement heights of 2 and

12 m.

The next assumption relating s to wind speed is that, at

some height Zr, a resonance condition exists where the component of

wind speed in the direction of wave propagation is equal to the veloc-

ity of propagation for that wave,
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u(z) r cos r = C (3.47)

where C is the wave phase velocity and 8 is the resonance angle

(Fig. 24). Some motivation and justification for this assumption can

be found in Phillips (1966, pp. 128-129). Combining (3.45), (3.46),

KCand (3.47) yields the resonance condition in terms of the friction ve-

locity u*,

(2)r
uAu

1.2

I1.0-
t 0.6-

W' 0.4-

H. HEIGHT OF WIND SPEED
0.2- MEASUMENT

SIA

00 t 20 30 40 50

WIND SPEED (kInte)

Fig. 23. WIND SPEED VS FRICTION VELOCITY FOR A LOGARITHMIC
WIND-SPEED PROFILE.

C
Munk assumed a resonance height z proportional to the wavelengthr

of the wave with velocity C; that is,

£ A
r k

where k : 21/A and A is a constant. The resonance condition then

c becomes

sec r = P hl (AA- 4-2) (3.48)
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WIND DIRECTION

ALLOWA83LE PROPAGATION
DIRECTIONS FOR WAVES
WITH VELOCITY C ARE
CONFINED TO THE
SECTOR BETWEEN± Or

E/
CC

Fig. 24. ALWOWABLE PROPAGATION DIRECTIONS FOR RESONANT WAVES.
"The resonance condition states that wind speed u(zr) at
some height zr is related to wave speed C by C = cos (e)

u(Zr), where Or defines the limiting direction in which
waves with velocity C can propagate.

where p u*/(CK) and C = Nfg7ik from the dispersion relationship

(3.24).

When r = 0, the allowable propagation region in Fig. 24r

reduces to a single line that corresponds to the cutoff condition for

C waves traveling faster than the wind. Under this constraint,

1 = Po 2(-1-2) (3.49)

and the selection of a value for A determines po which is the cut-

off value for I (Munk chose p = 0.1, admittedly rather arbitrar-

ily). To obtain the single line corresponding to 0 = 0 in Fig. 24,
r

s must go to infinity in Eq. (3.43). For any )r, it is assumed that
coss (0-) /2) will have some finite and constant valuer In particular,

r v

as It tends to infinity, () r tends to 90° and cos (H)r/2) = N2/2 for

the lower limit of s = 1 chosen by Munk.
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From (3.43), (3.48), and the condition that N(s)G() r= %-/2,

i 1*
S in (1/2) < s < O (3.50a)

( 1 1 1>g>
ii (AA-1ý-2) 0

C or, including (3.49),

s = An (1/2) i< s < 00 (3.50b)

+ 1+2g1n(g/

From the definitior of p, p / = C/C where C is the cutoff veloc-
ity corresponding to PO, and s becomes

An (1/2) 1 s< s CO (3.50c)
C/C 1

Sn2+ (o 0 < C < C 0

The spread factor s presented here is seen to be a function of both
wind speed (as represented by the friction velocity u,) and wave speed

C. The p-parameter conveniently combines both C and u., making s a

functto,i of a single variable. Figure 25 plots the relationship between

Sand s when go = 0.1 and N(s) G(8 ) %=K/2.

When Eq. (3.44) is combined with the Phillips saturation am-

plitude spectrum (3.36), the result, attributed to Munk, is

S(t%8) Oeg2 E + (1 - ) coss (9/2) (3.51)= -- 5- N(s)

where s is defined by Eqs. (3.50).

Tte low-frequency cutoff condition for the Munk spectrum is

contained in s and is essentially the same as that contained in (3.37)

where wave speeds must be less than the wind speed. For example, when
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C Fig. 25. SPREAD FACTOR s AS A FUNCTION OF THE ji-PAHAMWTER.

= 0.1, the low-frequency cutoff occurs at 0.98 rad/sec for a2O knot

wind measured at a height of 12 m (Fig. 23); the corresponding value for

the flat wind profile in (3.37) is 0.95 rad/sec. Figure 19 shows the

difference of 0.03 rad/sec to be negligible in view of the overall spec-

trum scale. Changing the value chosen for go changes the value of the

low-frequency cutoff proportionately and, hence, the agreement between

the cutoff obtained from the spread factor and that obtained from the

condition in (3.37).

C 3. Special Considerations for Second-Order Calculations

Not all first-order spectra models are adequate for calcula-

tions of radar cross section to second order although they may provide

excellent predictions of first-order cross sections. The reason is that

second-order cross section is a function of the entire ocean-wave
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spectrum while first-order cross sections involve only a portion of the

* spectrum. For example, consider the first-order term for incoherent ra-

dar cross section in (2.72),

aW () oW(P sin 0 co•5• ýa, P sine sin 0, w0 - w)

where 0 sine cos -e• =k and 0 sine sin =k are the cean-
x y

wave propagation constants in the x- and y-directions (Fig. 26). The

WIND DIRECTIONS~kx WAVE

rh _____DIRECTION

Fig. 26. RELATIONSHIP BETEN OCEAN-WAVE AND
DWIND DIRECTIONS.

frequency w - (A is the ocean-wave radian frequency in terms of the in-0

cident radio-wave radian frequency (z and the observed scattered radio-

It 0

wave radian frequency (. Relationship (3.24) requires that

0o

the spectrum W can be written as

wae adanfrqunc w Rlatioship(3.2)n e quires tsih sit

W(kh,kyow) = W(k ky) o-( (si e-sin) therefor2+,

(3.52)
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because wa -w is fixed by the values of k and k .
.0 x y

With the ocean-wave frequency set by kx and ky which, in
turn, are completely specified by the incident radio-wave frequency

through 0 and the incident and observation directions given by e, J,

and a, there can be only a single ocean-wave frequency contributing to

& the radar cross section for fixed radar geometry and transmitted radio

frequenvy; consequently, only a portion of the ocean-wave spectrum can

be observed. In particular, if the observations are confined to ocean

waves that are saturated, the Phillip's saturation spectrum (3.36) and

the Pierson-Moskowitz spectrum (3.38) will serve as good first-order am-

plitude spectra models (Fig. 19).

On the other hand, second-order radar cross sections for fixed

radar geometry and frequency involve the entire spectrum through the in-

tegral over all ocean-wave frequencies [see Eq. (2.72)]; therefore, the

ocean-wave model chosen for second-order calculatior should represent

the ocean surface under both saturated and nonsaturated conditions. Con-

sequently, a model of the Pierson-Moskowitz form is preferable to the

C Phillipts saturation model for nondirectional amplitude spectra, atleast

for thes'3 calculations.

All of the directional functions G(8) can be combined with

the Pierson-Moskowitz amplitude spectrum (3.38) to provide directional

spectra models suitable for second-order cross-section calculations.

4. First-Order Models in Terms of Wave Number

C Thus far, ocean-wave directional spectra have been considered

only in terms of wave frequency and angle from the wind direction; how-

ever, the spectra in the expressions for radar cross section in Chapter

II are written as functions of ocean-wave *jropagation constants in the

G x- and y-directions. The transformation from the first form to the sec-

ond is obtained from the spectrum propert1,

(h 2 12rs, (WO) d 115ojf kk(k x k y dk" dk y
0 CO 0 x y(3.53)
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where (h 2 ) is the mean square ocean-wave height.

* The Jacobian J, as defined by the determinant in

ýk 6k
x x

dkky dk d&dO (3.54)

7k •k

can be made exact with the aid of (3.24) and Fig. 26. The result is

2
k =kcos (9+(P) =-cos (8 +(P)
x g

2
k - - sin (8 + P)
y g

C Performing the partial differentiation indicated by (3.54) and evaluat-

ing the determinant yields

w3
J= -

2

From the expression defining (h 2),

C 2
Sk k (k ky) - S ,,(wE) (3.55a)

x y 2W

or

S (k k S k +k
k k yx y 2 + 3/2 3 2) tan-1

x 2 +k
(3.55b)

In Chaptor II.A, the surface-height spectrum W derinod by Rtico is four

times that defined by (3.53); hence,
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4S(k xk) y W(k x,k )

Table 1 summarizes both forms of the firstorder directional spectra

presented here (O = 0 in the table).

D. A Model for Sw '

The first-order spectra models considered above describe only those

ocean waves created by local winds. Waves also may be present that were

C generated by a distant wind system (or storm) and then have propagated

to the local region; such waves arA called "swell" [Kinsman, 1965, Ch. 1].

Swell generally consists of higher energy low-frequency waves that
have survived the damping effects of turbulence and viscosity. In swell

originating in very distant storms, only the lowest frequency waves exist

and these propagate in a single direction through the local region (Fig.

27).

A wave-height model for swell could be

S (kky) (h ) Nkx -k) 6(k -k ) (3.56)
xo y yo

where (h 2) is the mean-square height of swell, consisting of a single

frequency

2 k2 N1/2

L, = g(k2 + k)

-1and traveling in the direction given by tan (kyo/kAo).

Because there are no ocean wave-wave interactions to first-order,

the total first-order wave-height spectrum of a given ocean region can

be written as the supervosition of a local wind-gonerated spectrum

Sw (kx,k ) and the swell spectrum S s(kx,ky); that is,

S(k ,k) = S w(k xk y) + S (k Xk ) (3.57)
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DISTANT STORM CENTER

• ~ky

•2z

(2 LOCAL REGION

Fig. 27. PROPAGATION OF SWELL. To a local observer, swell from a

C, distant storm appears to be traveling in a single direction.

If local swell originates from more than one storm or wind system, its

spectrum can be represented by a superposition of the individual swell

spectra from each storm. Only a single source is considered here and

in the remaining chapters.

To be realistic, a model for swell should allow for a small spread

in wave frequency and, possibly, for deviations in the local propagation

direction. Such a model is obtained from (3.56) by replacing the delta

functions with gaussian functions,

S (k k exp 2itxp a(a 1 (3.58)
s 21rkxokyx2 k

The "kx and a ky are standbrd deviations of the x- and y-components

of the ocean-wave propagation constant about the means k xmand kym,

respectively. As t'ese deviations tend to zero, the gaussian functions
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become delta functions [Thomas, 1969, p. 587] and (3.58) reverts to

(3.56).

The use of gaussian functions in (3.58) is not meant to imply that

the actual distribution of swell-propagation constants is necessarily

gaussian. The intent is to provide a model that allows for a small but

finite band of wave frequencies and a small angular distribution of prop-

agation directions. As the origin of swell becomes further removed from

the local region, any model is expected to approach that of (3.56);

therefore, if akx and aky are kept small, the difference between the

gaussian and other possible models will be minimal.

To relate akx and aky to variations in the swell-propagation

constant and propagation direction, consider the geometry in Fig. 28,

where km is the mean value of the propagation constant and em spec-

ities the mean propagation direction. Let L6k and W represent the

maximum deviations of the ocean-wave propagation constant and direction

from their mean values, respeptively. The maximum positive deviation of

the x-component k from its mean value k is
x x

Lk = (k + ak) cos (em -) - k cos e (3.59)x m mm m

where k cos e = k
.:m m •on

Y,

j¢.

Fig. 28. DEVIATION OF A COMPONENT OF THE
SV•LL PROPAGATION CONSTAN~T.
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For small directional deviations, W << 1, cos (WŽ) 1 1, and

S* sin (6e) • 0. When terms of order A2 are neglected, (3.59) can be

approximated by

,6k = k Aesin 0 + Ak cos e (3.60)x m m m

A maximum negative deviation -,k occurs when 6k is negative and AOx
is positive; therefore, the r-component kx has a value in the range of

k ± k x, where x is defined in (3.60). A similar analysis shows

the maximum deviation of the y-component k to be
Y

ak = k Wcos e + 8k sine (3.61)
y m m m

Either of two arguments can be employed to relate the maximum devi-
ations akx and ky to the standard deviations akx and aky* The

first assumes that the gaussian function can be truncated for values of

the variables greater than a few standard deviations from the mean. For

exmple, at three standard deviations from the mean, the gaussian func-

tion has a value *;f 1.1 percent of its peak; values at greater than three

can be considered negligible. The maximum deviation could be written as

6k = 3 a0k

Alternately, rather than using maximum deviations for k and e in

c (3.60) and (3.61), standard deviations ak and ae could be assumed,
such that

akx = kMae sin em + ak cos e (3.62a)

u h =t ky kae cos em + k sin m (3.62b)

The tyk and a are not derived from the distributions of k and e
obtained by transforming (3.58) from Cartesian to polar coordinates;

they are simply a measure of the spread of k and 0 about their means.
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Because either method of selecting values for akx and aky is based

on approximations and assumptions, the form expressed in (3.62a) and

(3.62b) is chosen for simplicity.

In Chapter IV, calculations of radar cross section based on the

swell model (3.58) indicate that the mean values of k and k are
x y

all that are required to produce the effects of swell and that the

delta-function model (3.56) would suffice if it were amenable to numer-

ical analysis.

(7

C
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c•hapter IV

* INTERPRETATION AND EVALUATION OF OCEAN-
SURFACE RADAR CROSS-SECTION INTEGRALS

The second-order results obtained in the previous two chapters will

* be combined in this chapter to derive an integral expression for ocean-

surface incremental radar cross section per unit frequency that contains

both electromagnetic and hydrodynamic terms to second order. Section A

describes the transition from general time-varying surfaces to ocean sur-

faces. The concept of multiple Bragg scattering Is introduced in Section

B and is shown to provide a physical interpretation of the cross-section

equations. Section C discusses the analytical techniques that will re-

duce these expressions to a form suitable for numerical analysis, and the

results of this evaluation are presented in Section D.

A. Radar Cross Section for Ocean Surfaces

(• Expressions for the radar cross section of ocean surfaces can be

obtained from the general incoherent time-varying rough-surface cross-

section equations (2.72) and (2.74). Consider, for example,

aW(w) = 4n4 (asinO -cos 0)2 W(k x,k ow - W)

+ 24 Jf r 2 Wk1x'k lya) W(k 2 xsk 2 y, 0- - w- ) dpdqdn )
(:00 (4.1)

where r2 represents the bracketed terms in (2.72). This expression

applies to ocean surfaces when hydrodynamic effects are introduced

through the spectra terms. In Chapter III, the ocean-surface spectrum

was represented by first-order and higher terms of which the second-or-

der terms were derived as a function of the first-order terms (3.35).

This spectrum can be written as

W(k k W (1)(kkya) + ( (k k I) + higher order terms (4.2)
xfy x y x y(42
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Substituting (4.2) into (4.1) and retaining only terms to secone order

*leads to an equation that contains both electromagnetic and h) lamic

effects to second order,

a •W() = 4vo4 (a sin 0 - cos 0) 2 [W(1) (k x ky,Q) + W(2) (k x k y S)i

+ ITP4 j r2 W'(1)k( ,k1 ly) W(1) (k 2 x,k 2 y,w - w - n) dpdqdfl
00

S~(4.3)

For the first-order spectral terms, the relationship between ocean-wave

frequency and propagation constants k and k is determined by (3.24);

therefore, the spectrum can be written as

(+) ((4.4)
W (k ,kV I) W k , k F) 91 g[k+ k (4.4

x y x y Iyrf

as previously indicated in (3.52).

Either delta function that develops when (4.4) is substituted into

the integral portion of (4.3) allows integration over a with the result

that

. (w) = 44(a sin e -cos 0) 2 W (1)(P sin e cos0- a, sin e sin 0)

CC

0

+ fr2W (1)(p - ••a,q) W() (sinecosO-p. PsinOsino-q)

gj t)(,,) - 4 ) k ± I f •k ) dpdq (4.5)
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where the actual spectra arguments from (2.72) have been incorporated.

S$The subscript EM indicates that r results entircly from electromag-

netic effects, and k1 ,k2 represent

( 0)2 +q 2  and sin e cos 0 _P)2 + (P sin e sin -q) 2

respectively. The choice of signs in the delta functions in (4.5) is

not arbitrary, and considerable care will be taken in Section C.5 to

determine the regions of integration where each sign is valid.

The second-order spectrum in (4.5) has been expressed as an inte-

gral over first-order spectra in (3.35); therefore,

S((2 sin e cos - a.3sin e sin 0, w -w)

1 f 2 (I). , (1)

2 r lHW p ,q') W ( sin e cos O-Pa-p', P sin e sin $-q')

6 0 - W -+gk ± +gk 2) dp'dq' (4.6)

(j where 1H represents the bracketed term in (3.35) and is the result of

hydrodynamic effects alone. The k1 and k2  in this expression do not

yet correspord to the definitions in (4.5); however, with the following

change of variables,

q1 -)q

p' -4p - Oa

the spectral te.ms and propagation constants become those in (4.5).

If the second-order spectrum in (4.5) is replaced by (4.6) and the

two integrals are then combined, the desired expression for incoherent

second-order incremental radar cross section per unit frequency becomes
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OW M u4* (a stn 9con0)2 W(13 in 0cos0 -0cg.0min.9m1A0) 6(,q tWý

+ 4 fi {((9 sin - p cos 0 - q s.in 8)( Q - p) - (a a in - coo 0) b2 (p.).2

• I:(p,q) b*(p,q)

(P s[( in 0- p cos 0 -• . q sin O)_M -p) - ( ,m in e - cos 0) b2(p q )

b*( sin0 coo 0-p + 0a, 0 sinG sin 0- q)

+ 2(ag sin 0-con 0)2[kl + k2 + "n (klk3 - .a1 ]21

4,• W2) w(p - Pa,q) W(S sin 0 coo 0 - p, 0 ,ia 0 si - q) dpdq (4.7)

where

i~ =(p~cO~ qa.

k2 = ( sin 0 cos -p) ' + ( sin e sin -q) a^

with k, -- I and k2 F2 1 The radian ocean-wave frequencies are

w.= =gk2

24 2

W =jg(_sin e cos 0- + (~sin 0 sin0)1/C B

The doppler shift of the returned signal w -0-w is denoted by T1. All0

spectral terms are now first order.

A similar expression for a HH(w) can be obtained by replacing

(a sin e - cos 0)2 with cos 0 and multiplying the entire result by
2(7 Cos 0) .

Equation (4.7) for aVV() and its horizontal complement for

alf(t(w) represent ocean-surface second-order bistatic radar cross sec-

tions (per unit area and frequency) and are presented here for the first
time. In Section C, Eq. (4.7) will be reduced to a backscatter
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grazing-incidence geometry and shown to be equivalent to previously pub-

lished results WBarrick, 1972] except for a difference in the relative

weighting between the electromagnetic and hydrodynamic contributions.

B. Bragg Scattering

The concept of Bragg or resonant scattering from periodic structures

has been shown to be responsible for the dominant first-order doppler-

shifted radar echoes from ocean surfaces [Crombie, 1955] and for the

smaller second-order sideband structure illustrated in Fig. 1 [Barrick,

1972]. In this section, this concept is examined and is also found to

apply to the expressions for bistatic-radar cross section.

The condition for radio-wave Bragg scattering requires that energy

scattered from successive periods of a periodic structure must add in

phase [Brillouin, 1953, p. 117]. This condition can be written as

d1 + d2 = n?

where 7\ is the wavelength of the incident radio wave and n is an in-

teger greater than zero (see Fig. 29). For a given periodic structure,

incident radio waves of a specific frequency and propagation direction

• Iare reflected in a particular direction under the Bragg condition. Con-

versely, only structures of a specific period will reflect radio waves

in a specified direction for given incidence conditions. To determine

the relationship between the structure period and the incident- and re-

Sflected-wave directions and frequency, consider the geometry in Fig. 30

where two parallel incident rays are reflected at Cartesian coordinates

(0,0,0) and (xoy,,O). The distance d1  can be written as

(x y XO)ix + Yo~iy

d ( 0 a = + y ox a y

where a' denotes a unit vector, and
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Orl

I STRUCTURE
Fig. 29. REFLECTION FROM A PERIODIC

STRUCTURE. When dl +d 2 = nN (n is an
integer), reflected radio waves add in
phase and Bragg scattering occurs.

C
a 

Z

Fig. 30 * BRAGG-SCATTERING GEOM4ETRY.
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Similarly, d 2  can be written as

Or A + frx + Yopr

d2 0 - ox oy

The Bragg condition d1 + d2 = - becomes

x0 (P ix - Prx) + Y°(iY- Dry)

or

xo( x -(rx) + yo(piy Pry) 2v (4.8)

The integer n is taken to be unity.

Equation (4.8) relates the components of the radio-wave propagation

constant to point (xy 0 ,O). A similar expression relating the orienta-

tion and period of the periodic structure to the same point can be de-

rived and combined with (4.8) to determine the relationship between ra-

dio-wave period and direction and the structure period and orientation.

A direction can be assigned to the periodic structure by defining

L a^ +La
xx yy

such that I•l = L, where L is the period length (Fig. 31). This di-

rection will be associated with the propagation direction of an ocean-

wave train which Is a moving periodic structure. The length of the

structure can be expresF J as

CL
(xa + y ) =L

L o'x oy

or

2
Lx + Lyy° = L (4.9)
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1*Ay
I, (0,0,0) x

.Ly

Fig. 31. A DIRECTIONAL PERIODIC
STRUCTURE.

If k is definea as

k kcos Cp a + k sin p a
x y

where k = 2v/L, then p = k cos (p and q = k sin cp represent the x-

and y-components of the propagation constant for an ocean wave of length

3• • L.

Because cos = /L and sin q) = L /L, then p = 2vL /L' and2 x y Irq =2vL y/L ,and Eq. (4.9) then becomes

px + qYo = 27T (4.10)

which, combined with (4.8), provides a relationship between the radio-

: •wave and ocean-wave (moving periodic structure) propagation copstants,

hods[P-( 1  •r)] xo+[q (•iy ry)]Yo1 0 (ix - 8x ) x + [ - -~ P r Y) yo =0 (4.11)

A little thought reveals that point (xoyO) is not unique and that
(4.11) holds for any choice of x and Yo; therefore,
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P =~ *(ix -rx

- x(4.12)

iy ry

where the choice of signs indicates that L could have been chosen in

the opposite direction. From the scattering geometry in Fig. 32,

Pix = P Piy = 0

,rx = P sin e cos pry = p sin e sin

and (4.12) becomes

p = P sin G cos 0 -

q = 0 sin e sin

The spectrum in the first-order term in (4.7) is to be evaluated at pre-

cisely these values of p and q; as a result, . first-order contribu-

tion to the radar cross section is made by only those ocean waves (or,

more correctly, by those components in Rice t s model) that meet the Bragg
condition for n =1

INCIDENT Z

RAY

y RAY SCATTERED
TOWARD OBSERVATION
POINT

\y, ,v

Fig. 32. INCIDENT- AND REFLECTED-RAY GEOMETRY.

f" To explain the s,-cond-order terms in (4.7) by means of a double

Bragg-scatl.tering procss (Fig. 33), consider two ocean wave trains whose

propagation constants are designated by pl,qI and p2 , q2 , where p
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Sf

OCEAN WAVE 2
REFLECTED
RAY Ar

Ssin Gcos #-p-I

.• .i o i 2, I-q \y
fi sin Gsino-q

INTERMEDIATE
RAY

INCIDENT RAY

OCEAN WAVE I

Fig. 33. DOUBLE BRAGG-SCATTERING GEOMETRY.

and q represent the x- and y-components of the propagation constants,

respectively. Double Bragg scattering occurs when radio waves scattered

t. from one wave train [according to the cond!tions stated in (4.12)] are,

in turn, Bragg scattered by a second wave train.

Assume that the propagation constant of the intermediate radio wave

(the wave scattered from the first ocean-wave train and incident on the

second) is

Spa + qa + ra (4.13)

where • = 21tA. Conditions (4.12) applied to the first wave train

require that
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Pix P Piy = 0

rx p ry = q

and, hence,

(4.14)

q, q

Bragg scattering from the second wave train requires that

ixrx =P sin e cos

y qryS•ly= q ry =sin 0 sin

and, therefore,

P= sin e cos 0-p

(4.15)

q2 = P sin e sin 0- q

The spectra in the second-order terms in (4-7) are to be evaluated

at exactly the points specified by (4.14) and (4.15) which are the con-

ditions for double Bragg scattering. In addition, the variables of in-

tegration in (4.7) represent the x- and y-components of the intermediate

radio-wave propagation constant defined in (4.13). The concept of mul-

tiple Bragg scattering adds physical significance to the expressions for

radar cross section and will be helpful in evaluating them and in inter-

preting the results.

C. Integration Techniques

Techniques for evaluating the second-order terms for radar cross

section will be confined to a backscatter grazing-incidence geometry for

the following reasons.
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(a) The radar cross-section expression is algebraically much
simpler; however, there is no loss in generality for the
integration techniques to be developed.

(b) Results obtained from calculated second-order radar cross
section for these conditions have been published [Barrick,
1972].

t (c) Available measured data that can be compa-ed to theoreti-
cal results (Chapter V) are limited to this radar geometry.

1. Reduction of aV to Backscatter Grazing Incidence

Equation (4.7) can be reduced to a backscatter grazing-inci-

dence geometry by imposing the following conditions on the angles of in-

cidence and observation (Fig. 32),I' =900  --
0 =1800 a = 1

IAs a rcsult of these conditiohs, Eq. (4.7) becomes

a v(w) = 164 W(-2p,0) 5(n ± W )

" Io4 - 2[(P + p)(P - p) - 2b 2(p,q)]2

b(p,q) b*(p,q)

"+ 8[k 1 k2 + sgn(kk - 'l k'2) ( - - 2 "

w ( ± w 2 W(p - P,q) W(-P p,-q) dpdq (4.16)

where

(p - a x + qay

k (-p - a^) "i - qa
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w1 = jg -k

'0•2 =jg2
UB = 2

kl 2 I11'1

When finite c,.,nductivity is assumed, b(p,q) + PA replaces

b(p,q) as the z-component of the intermediate wave propagation constant

.•',Chapter II.E), where A is the normalized surface impedance. Beceuse

P is small compared to b(p,q), except for b(p,q) near zero, this

r-placement can be omitted except when b(ptq) appears as a denominator;

omission of PA- in the denominator of (4.16) causes a singularity when

Sb(p,q) 0 . From Chapter 11,

F- 2- 2 2
S• _p• - q• • _> p +

S' ~ ~b(p,q)= . .
'ý 2 2

-i• + q - <2 • p + q

S:whic,i, combined] with tht- definitions of kI and k yields

242

Whnfiie b*civt(ipssmdbp~)+ epae

for b(p,q) a the in t he denominator of (4.16). Consistency with the
definition of b(p,q) requires the negative solution for negative argu-

rolaements of the radical.

oIoi the numerator of (4.16), were P, can be neglected,

b 2p(p'q) k 0 ko h2

+ p -2 2x

b q jp =-k lx
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I

and the entire integrand can be written in terms of the ocean-wave prop-

agation constants k1 ,k 2 as

aw(w)= 16904W(-20,O) 6(in Y 7AB) •4 J -klxk2 x- - 2k1 " 2]

CO Irk, i 2 + PAJ

rrEM

+ 4 k+ k2+ sgn(k 1 k2 -k 1 • k2

rs
n 5(• - ± W0 -2) Wk-Il) W(k2) dpdq (4.17)

where 1EM and PH denote the contributions to radar cross section

from second-order electromagnetic and hydrodynamic theory, respectively.

This equation is similar to the one presented by Barrick (1972). The

difference in the two occurs in the relationship between PF and

Instead of writing

21,6 + 8P.

as in (4.17), Barrick combined PFM and PH asIL. 1'Em - i HI

H where, for r EM, the absolute-value signs are dropped.

Except for the multiplicative constants, the difference be-

C tween the two forms corresponds to the difference between incoherent and

coherent addition of scattered fields. The first, representing incoher-

ent addition, comes directly from the mathematical derivation; the sec-

ond can be argued from the contention that, although individual first-

(£i order ocean-wave trains may be uncorrolated, second-order wave trains

are related to the first-order waves that generate them. Consequently,
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I.
the first-order fields scattered by the second-order ocean waves (r )

should be correlated to the second-order fields scattered by the gener-

ating first-order ocean waves ( EM). The correct form is difficult to

determine; perhaps partially coherent addition best v'epresents the ac-

tual scattering process. Incoherent addition, however, will be retained

here although either form is equally suitable for the discussion of the

integration techniques to follow. In Chapter V, cross sections based on

both will be compared to measured data.

The difference in the multiplicative constants or relative

weighting between r and 1' would be best determined by a detailed
CEM H

comparison of the derivations. A derivation of the second form is not

available, however, and the comparisons in Chapter V will be relied on

to help resolve this discrepancy.

Thus far, care has been taken to avoid the singularity in r EM

by introducing a finite surface impedance. There are, however, singu-

larities in rH that have not been discussed, and these occur when Tj=

WB' W1  0, or W2 -0. Actually, when w, 0,

w B= WB'

and when w2 =0O W Wo = B = 1

so that a singularity occurs only at Tj = It will be seen, however,

in Section C.4 that, because of the low-frequency cutoff of first-order

{ (ocean-,.ve height spectra, there is no contribution to second-order

cross section at the first-order Bragg frequency WB

2. Change in Variables of Integration

One of the integrations required to evaluate (4.17) can be

carried -'t analytically with the aid of the delta function,

g• 0p_)2 + q g (p + )2 + q2
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For example, the integration over q can be eliminated by integrating

over p and evaluating the integrandl at values of q for which

S_ g _p-)2 + ± g + )2 +q =0 (4.18)

The analytical solution to this equation, however, is not readily appar-

ent and, if numerical techniques are employed to integrate (4.17); this

expression must be solved for each value of the variable of integration.

The complexity of evaluating these roots can be avoided if variables can

be found that permit an analytical solution. Rewriting the delta-func-

tion argument as

reveals that the use of k and k or Fgkl and jgk2 as variables
1 2

provides a simple solution for the argument zeros. If k1 is to be the

4 remaining variable, integration over can be performed by evaluatingk2

the integrand of (4.17) at

S)2

k2 g

Because the signs of p and q are formally lost in the definition of

k and k 2 , care must be exercised in selecting the proper regions of

Sintegration; these regions are discussed in Sections 3, 4, and 5.

The formal change of variables requires a Jacobian for the

transformation of p and q to kI and k 2 , defined by

Sdp dq = Jdk dk
1 2

tBecause of the form of the arguments in the delta function, the inte-

r •grand in (4.17) must be multiplied by the inverse of the derivative of
(4.18) with respect to q. This additional term is explained in more
detail later in this section.
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where

J=

6q .6q

-1

The inverse Jacobian J can be determined from the definitions of k

and k2 and, when it exists, the Jacobian can be found from the rela--1
4. tionship JJ = 1. In this case,

klk

J = 1 (4.20a)

The sampling property of the delta function, expressed mathe-

matically as

J F(x) 6(x) dx = F(O)
OD

provides another Jacobian. if, instead of x, the argument of thedelta

a, function is some function of x [such as f(x)], then

0 F(x) 5[f(x)] dx F(xo)

where f(xo) = 0. By changing the variable from x to f(x),
0

00 0J dff~) x) ( 0

8frx)F(x)

F(x) 5(f(x)] dx = F(x) -fT(x) f

where the modulus sign allows for the property 6(-x) = V(x). For

(4.19), the delta-function Jacobian is
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J = If' (k 2 ) 1- = 2 2  (4.20b)

With the above Jacobians included, integration over k2 with

the aid of the delta function reduces (4.17) to the single integral

(2) 4 22-i
a.. .TO T [El 2o) 1  20  " ('"20)_

* -W( k1 k dkI (4.21)

where

± g ±k Nfr';k 0

k20 = (2 -+Jgi)2/g

The vector k20 can be derived from the definitions of k. and k2

evaluated at k1 and k20'

2 2 2

k = (p- )2 + q

2 24k 2 0 =(p +•)2 +q

Solving for p and q yields

2 2

20 1

and

2 2 21- + k20 2 (kk20-k

16 02

Then, from the definition of k2 in (4.16),

V _nIC4 
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k 2 (p + 0) x - qa- y
k20x y

Both positive and negative values of q must be included in the evalua-

tion of (4.21) because the original integral spained the region - (<q <o;

therefore, the integration must be performed twice, once for -q and

once for -q.

3. Integration Regions

The region of integration for the untransformed expression

(4.17) is the entire p,q-plane divided into regions of freely propagat-

ing and evanescent intermediate waves by the circle b(p,q) = 0, as il-

lustrated in Fig. 34. When b(p,q) is real, the phase factor -ib(p,q)

is imaginary and the intermediate wave is a freely propagating wave.

When b(p,q) is imaginary, the phase factor is real and the intermediate

wave field attenuates exponentially a'ay from the surface with a surface

phase velocity greater than that for free-space propagation. The transi-

tion from one region to another is of considerable interest because the

integrands of (4.17) and (4.21) become nearly singular along this circle.

Aq
EVANESCENT
REGION

P P

S~PROPAGATING
(• REGIONb(p,q ) =0

Fig. 34. PROPAGATION REGIONS FOR INTER-

MEDIATE RADIO WAVE.
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In evaluating (4.21), it is helpful to view pictorially the

regions of integration in both the p,q-plane and the kl,k 2 -plane. Fig-

ure 35 represents the p,q-plane with the loci of constant kI and k2#1 2

defined by the circles

2- 2

kI =-J(p- ) + q

k 2

superimposed. Unless these circles intersect, no points p and q can
satisfy simultaneously the definitions of kI and k 2 . Figure 36 rep-

resents the limits of intersection from which the regions of integration

in the kl,k 2-plane can be determined. From Fig. 36a,

k + k > 2P (4.22a)

1 2

(/

fk2
I

\ 
\T 

T

Fig. 35. LOCI OF OCEAN-WAVE PROPAGATION CONSTANTS.
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and from Figs. 36b and 36c,

I k < k + 20 (4.22b)

2 1

kI < k2 + 2ý (4.22c)

These conditions are illustrated in Fig. 37 where the allowable region

of integration in the kl,k 2 -plane is shaded. The p,q-axes indicate that

this region encompasses the entire p,q-plane.

L

Kg/

I.Q

2A

Fig. 37. INTEGRATION REGION IN THE kl,k 2 -PIANE. The shaded
region contains all values of ocean-wave propagation con-
stants that contribute to the radar cross-section inte-
gral.
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The regions of propagating and evanescent waves for the inter-

mediate scattered radio wave in the kl,k 2 -plane can be determined from

the definitions of k and k20

2 2 2 2
k =(p- 20p + + +q

2 2 2 2
2=k2 =(p2 +2•p + 1)+ q

Adding these and using the condition

"2 2

p +q =q

for the transition from one region to the other yields

2 2 2k I + k2 4

which is the equation for a circle in the k,,k 2 -plane along which

b(pq) = 0 (Fig. 38).

EVANESCENT

213

PROPAGAT ING

.213 k2

Fig. 38. PROPAGATION REGIONS FOR INTERMEDI-
ATE RADIO WAVE.
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4 Integration Cnor
4. Elimination of one of the variables of integration by means of

the delta function has reduced the double integral (4.17) to the contour

integral (4.21), where the relationship (4.18) between k,, k2, and .I

provides the family of loci, paramietric in r, along which (4.21) is to

be evaluated. Much of the behavior of aW(w) as a function of r de-

pends on how these contours traverse the regions of integration.

a. 'iWo Modes of Inte-rat ion

The choice of signs in the argument of the delta function

(4.19) provides two distinct families of integration contours. According

to the double Bragg-scattering concept, the doppler shift n is caused

by both ocean-wave trains imparting either a positive or negative dop-

pler shift to the radio wave (sum mode) or by one ocean-wave train im-

parting a positive doppler shift while the other imparts a negative dop-

pler shift (difference mode). Figure 39 illustrates how the two modes

could be visualized. If the signs are the same, the zeros of the delta

function are

Qg-kd +Ji +Jgk2

which is the sum mode and, if they are different, by

which is the difference mode.

In the sum mode, both g and g must be less than

Tj (or equal to r if one of the radical terms is zero) for zeros of the

delta function to exist. In the difference mode, however, both radical

terms can be large as long as their difference is less than •.

For positive values of 1, the sum-mode contours are

g ~ gk2 Fg _k 2 1N>41
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9 k 2 O
ki- kk

SUM MODE DIFFERENCE MODE

Fig. 39. DOPPLER SHIFTS FROM TWO OCEAN WAVES. Two ocean
w•ives can impart doppler shifts of either the same sign
(sum mode) or of different signs (difference mode). The

total shift can be positive or negative for either mode,
depending on the directions and relative magnitudes of
k and k.

1 2*

These contours, which also represent negative values of n, are plotted

in Fig. 40. Similar contours of integration for the difference mode come

from

(T) + gkl,2
k = k >k2 g2

or

(r + r 2)
"k= gk >k
1 g 1 2

The difference-mode contours (Fig. 41) are double valued.

The contour to be used in the integration for a particular value of n

depends on the relative magnitude of k and k2 . For example, if

is positive, with one ocean-wave train providing a positive doppler shift

and the other providing a negative doppler shift, then
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BW

I• kg

Fig. ~ ~ ~ ~ ~ -40. SU-OEITGATO OTUS

p\

2 1 1 2+W

' l \
\ '

NII

F Fig. 40. s catte radio wv wthURS.

S~and klmust always be greater than k2 . If Tj is negative, k2  must

be greater than ko. If the sign of the doppler shift from each of the

wave trains is rk k implies positive m and kI > k2
Simplies negative mt.

vdA comparison of the sum- and difference-mode contours in
;(• •Figs. 40 and 41 indicates that scattered radio waves with doppler shifts

S• greater than (aB occur in the sum mode only and that doppler shifts less

S• than WB result from difference-mode scattering. This modal separation

S~can be shown mathematically from the conditions stated in (4.22) and pro-

•, •-vides a convenient means by which to distinguish the sum- and differe.~ce-

mode regions 4n plots of (T).

I (2)
a3 (TI) emphasizes the dependence of radar cross section on doppler
shift and replaces the notation ,,2 r)()) Thc superscript denotes scc-
ond order.
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I~Il

/2 W
I# \

28 k2

Fig. 41. DIFFERENCE-MODE INTEGRATION CONTOURS.

In either mode, the contours for 1 = W cross the inte-

gration region ornly at points (2p,O) or (O,20) in the k ,k 2 -plane.

Because neither k nor k can be zero for real ocean waves, there is1 2
no second-order contribution to radar cross section at the first-order

Bragg line; in fact, ocean-wave spectra have cutoffs well above k = 0

(Chapter III.C), and no second-order contribution is expected near the

first-order Bragg line.

(2)
b. Relationship between Integration Contours and aW j(

In this section, individual integration contours will be

examined to determine how they are related to particular features of a

typical plot of qW( 1 ). Where applicable, thesc fcaturcs will also be

explained in terms of double Bragg scattering.
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Figure 42 Is a plot of aW(TI) obtained by integrating

(4.21) with a Munk wave-height spectrum (Table 1) at a wind speed of 30

knots (friction velocity = 0.725 m/sec). Figure 43 shows the relation-

ship between wind direction and radio-wave propagation directions. The

radar transmitter frequency is 10 MHz.

1.0

.3

>10-1

FIRST-ORDER

BRAGG-LI NES

/' I
10-

-SUM MODE DIFFERENCE MODE j + SUM MODE

-2 -I 0 I 42 23/4 2
NORMALIZED DOPPLER SHIFT n//we

Fig. 42. TYPICAL PLOT OF INCREMENTAL RADAR CROSS SECTION FOR A
MUNK WAVE-HEIGHT SPECTRIJ7R. Wind = 30 knots at 1350 with re-
spect to the radar direction (Fig. 43). Radar frequency = 10
1MHz. First-order Bragg-line height is proportional to power
rather than to power spectral density.
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WIND DIRECTION

] S" t-RADAR DIRECTION
RADAR

SCATTERING
AREA

Fig. 43. RADAR-WIMD GEOMETRY.

t" The features to be correlated with the integration con-

tours are the spikes in Fig. 42 occurring at 9 = %12 wB and 23/4 WB.
These peaks result when the integration contours traverse regions where

the integrand becomes large or nearly singular. For example, the inte-

grand in (4.17) is nearly singular when

k *k• = 0 (4.23)
1 2

if the normalized surface impedance A• is small. Condition (4.23) de-

fines the transition line from propagating to evanescent intermediate

radio waves illustrated in Fig. 38, and integration contours approach-

ing this line can be expected to cause high values of a (2) " The

difference-mode contours (Fig. 41) all cross this line; however, they

cross almost orthogonally so that the transition-line contribution to

the integral should be small compared to the total contribution. Al-

(though the overall level of (2) (-I) in the difference region should

be higher than in the regions where the contours do not approach the

transition line (sum mode for Tj > 23/4 YB), there should be no dis-

tinguishable features for any single value of TI, as indicated in Fig. 42.
C In the sum mode, many of the contours do not cross the

transition line (Fig. 40) but, for those that do, (1 (2)(q) should be
23/4

higher (this is verified by Fig. 42). In particular, when = =2 B

the integration contour is tangczt to the transition line and a large
C integrand exists over a substantial part of the contour, thereby creat-

ing a spike at this frequency.
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In terms of multiple scattering, the transition line de-

termined by (4.23) corresponds to ocean-wave trains travwling in ortho-

Sgonal directions (kI -k2 = 0) and produces a corner reflector effect

(Fig. 44)1 where radio waves incident on either wave train produce back-

scatter. The direction of the ocean-wave propagation vectors can be such

that either the sum or difference mode exists. The lack of a definite
3/4

spike at -2 = - is the result of the wave-height directional

spectrum and wind direction selected. Figures 43 and 44 show that one

of the wave trains forming the corner reflector propagates along the

line defining the wind direction. For positive doppler shifts, this

wave train must have a component of propagation toward the radar (see

Section C.5) and must, therefore, propagate in the wind direction; how-

ever, for negative doppler shifts, this wave train propagates directly

against the wind where the Munk spectrum has zero amplitude when E = 0

II

ki'k 2 =0

SV,

Fig. 44. CORNER REFLECTOR.

t When the intermediate wave propagates on the surface with propagation

constant P (this occurs on the transition line), the incident, re-
flected, and intermediate radio rays are coplanar for the backscatter
geometry chosen and Snellts law implied by Fig. 44 is applicable. Gen-
erally, when the intermediate wave has a vertical component of propaga-
tion or is an evanescent wave, such a simple picture cannot be drawn.
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and only small amplitude when e is finite. At the point where the

sum-mode contour is tangent to the transition line (Fig. 40), k = k2

* and p = O. As a result,

[g(202)r + Jg (2_2)1/2 23/4

indicating that the tangent sum-mode contour does indeed correspond to
3/4the 2 wB spike shown in Fig. 42.

The integrand in Eq. (4.17) reveals no obvious singular-

ities at j = .B" Although the transformation Jacobian (4.20) is un-

defined at q = 0 and, hence, the transformed version (4.21) of Eq.

(4.17) appears to have a singularity along the entire p-axis which bounds

the region of integration in the kl,k 2 -plane, it will be shown in Appen-

dix A that this is an integrable singularity except when p = • and

q = 0; in this case, the integrand is already singular because i =

Because no obvious singularities create the NI- WB spike,

a plot of the integrand will be examined for a clue. Figures 45a and 45b

illustrate the sum- and difference-mode integrands in Eq. (4.17) with the

delta function and spectral terms excluded, and Fig. 45c indicates the

paths along which the integrands were calculated. The sum-mode integrand

becomes quite large near the portion of the p-axis that lies on the k1 +

k 2= line, particularly at Tj = N wB where the integration contour

is tangent to this segment of the p-axis. The greatest integrand con-

tribution to this spike occurs at the p,q-origin where kI = k2 = , and

k and k are aligned with the radar direction (x-axis in Fig. 32).
1 - 2

If k and k2 are in the same direction, they represent a single wave

train with k = • (this is the Bragg condition for n = 2; see Section

B). Because the phase velocity of an ocean wave is N-/q, the phase

velocity of an ocean wave with k = • is N times greater than that

of a wave train causing first-order Bragg scattering (k = 20).

Figure 46 illustrates what happens in terms of multiple

scattering. With p and q both zero, the intermediate radio wave

propagates along the z-axis and, although it propagates away from the

ocean surface, the fields associated with this radio wave interact with
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I so -50

2 p-AXIS 2 p ---I

a. Sum mode b. Difference mode

k!_

6k

•. ft - A//"

0 /%N C. Integrand cuts

2 \ **'i

x

'L \j \
0 20 40 61 k2

Fig. 45. SECOND-ORDER RADAR CROSS-SECTION INTEGRANDS. Sum- and
difference-mode integrands are calculated along the line k= k
A • *3 (c), where A varies from 0 to 1.8. Integrands exclude the
delta function and spectral terms in Sq.(4.17).
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k1'k 2 :=+

'I'
,A Y

I -

k, k2

Fig. 46. MULTIPLE BRAGG SCATTERING
FOR kj = = k . Incident radio
waves are scattered away from the
surface by wave train 1. The sec-
ond wave train scatters the inter-
mediate radio wave back along the
surface.

a• the second ocean-wave train in such a manner as to produce the backscat-

tered radio wave shown. Note that both the sum- and difference-mode in-
tegrandh continue to increase as kI and k2  increase; whereas, Fig.

42 shows that, as these constants increase, the sum-mode total integral

decreases. This is the result of the spectral terms (excluded from the

integrand calculations) decreasing at the rate of k-4 (see Table 1).

S5. Doppler Shift as a Function of Ocean-Wave Direction

The choice of signs in the delta function in Eq. (4.17) deter-

mines which contours (sum or difference mode) are to be used in evaluat-
(2)

ing a- (n); however, the criterion for selecting those signs has not

been established. Whether a given wave train causes a positive or nega-

tive doppler shift in a radar signal will depend on the direction of

oce-i-wave propagation.
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The relationship between doppler shift and ocean-wave direc-

tion can be found by considering what happens when a radar signal with

propagation constant i impinges on an ocean wave traveling with ve-

locity v (Fig. 47). An observer traveling with the wave will see the

radar signal doppler shifted by an amount

*wdl =

To first order,t a stationary observer at point 0 will see a doppler

shift (relative to the frequency noted by the observer moving with the

wave) of

d2 r

\o STATIONARY
OBSERVER y

x

VELOCITY

S~WAVE
S~TRAIN

Fig. 47. SINGLE-SCATTER DOPPLER-SHIFT
i GEOMETRY.it.

tFirst order denotes that • is taken as wo/c rather than the more

exact (w +wdl)/c, where wo is the transmitted frequency and c is
the velocity of radio-wave propagation. This simplification was also
assumed in Chapter II for tho derivations that led to Eq. (4.17).
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As a result, the total doppler shift imparted to the incident signal by

the ocean wave is

'D = cil + ' dl =' " ('d - ) (4.24)

When the dispersion relationship (3.24) replaces v with a function of

the ocean-wave propagation constant k, the total doppler shift becomes

D k•(r - )(4.25)

The doppler shifts imparted by the two ocean-wave trains asso-

ciated with (4.17) or (4.21) can now be calculated directly from (4.25).

From Fig. 48, the radio- and ocean-wave propagation vectors for the first

wave train are

i = (4.26a)

Pr = P~ x qay + raz (4.26b)

k I = (P - P) a,,x + qa y ^(4.26c)

and the doppler shift according to (4.25) is positive with a magnitude

of

For the second wave train,

= pa x+ qa y+ ra (4.27a)

r - (4.27b)

k 2 f(-p a x - y (4.27c)
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Ka=-(P+'B0)8X -qt%

e#x WAVE TRAIN 2

ex ri i2pox +q8Y +rA.

I £\

083t'-WAVE TRAIN I

/g:(p-0)81 + q 0y

Fig. 48. RELATIONSHIP BETWEEN RADIO-WAVE AND OCEAN-WAVE
PROPAGATION VECTORS.

and, again, the doppler shift is positive, but with a magnitude of

The corresponding delta function in (.17) for the ocean waves

defined by (4.26c) and (4.27c) is

q I - - W2)

To obtain delta functions representing the negative sum mode or the dif-

ference modes requires expansion of the definitions of i1 and "2 to

include k I and ±k 2. The restrictions on k1 and k 2 in (4.26c)

and (4.27c) are a conaeq-ence of the fact that the scattering geometry
(Fig. 48) is independent of wave direction. Expanding these definitions

does not change the orientation of the wave trains but simply specifies

their direction of propagation. The equations for radar cross section

yield (4.26c) and (4.27c) rather than the negative counterparts because
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positive directions of ocean-wave propagation were assumed in their der-

ivation. The integral in (4.21) must be evaluated four times, once for

each possible directional combination of' k I, and k2 if second-order

cross section is to be completely determined.
An interesting result of Eq. (4.26) is that ocean waves that

appear to provide a particular sign for (1 or w2 do not. For exam-U ple, an ocean wave with a velocity component in the negative x-direction

(Fig. 47) could be expected to impart a positive doppler shift to a radar

signal traveling in the positive x-directiOn. To verify that this does

not necessarily occur, consider an ocean wave with the propagation vec-

tor

(p ax qay

and a radio wave with propagation components (Fig. 48),

"r pa +qa +raz

' x y z

Equation (4.25) shows that these propagation vectors result in anegative

doppler shift; however, kx can be negative (kx negative was expected

to provide a positive doppler shift) if p is positive and larger than

the radio-wave propagation constant 3. Under certain conditions, then,E !an ocean wave with a velocity component in the direction of the radar may

provide a negative doppler shift; this condition is p > f. Because

2 2 2 2
p - -q =b2(p,q)

b(pq) is imaginary and the reflected wave is evanescent.

Because the evaneseent region must be included in the integra-
tion of (4.17) or (4.21), the signs of W1 and w2 must be based on Eq.

(4.25). Barrick (1972) apparently used only the sign of the x-component

of the ocean-wave propagation constant as the criterion for selecting
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these signs in the delta function, in disagreement with the conclusiov

here.

6. Integration Limits

Ostensibly, the integration limits for (4.21) are from zero

to infinity; however, the integration contours (Figs. 40 and 41) cross

the integration region boundaries within these outer limits. Actual

li"its are obtained from the intersection of the contours with the re-

gion ',oundaries. These intersection points are shown in Fig. 49 for

both sum- and difference-mode contours.

kf Ibkb h

b

dN g

a
2P k2  23 k2

a. Sum mode b. Difference mode

Fig. 49. INTEGRATION LIMITS.

Point (a) for the sum mode is the intersection of the boundary

k k + 20 (4.28)

with the contour

(• _ NJi) 2

k g(4.29)
2 g
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I.&
The value of the variable of integration k1 at this point is found by

solving (4.28) and (4.29),

(w2 -
2)

k1 (a) 4I 2g (4.30)

Similarly, the intersection of the sum-mode contour (4.29) with the

boundary

k1 = k2 + 2P

provides the value of k1 at point (b),

(2R+ 'ri 2)2
k (b) = (-4 22 (4.31)

1 4 2
4ig

For 71 < NF2 W B, this coitour also f.ntersects the boundary

k1 + k2 = 2P (4.32)

Combining (4.29) and (4.32) results in a qLadratic expression for k

whose two solutions correspond to points (c) and (d),

k (c) B B 2g (4.33a)

2 w2 2

kl(d) = B T 2  B (4.33b)1 2g

The difference-mode contours

(Ti + , ,, k1 
2

2 g
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(+ + k2 2

1I g

intersecting the integration region boundaries establishes the limits

2 2 2

B B

k (e) = 2g (4.34a)

2g

2 2)

k(h) = (4.342)

1 2

•i~ k(g) = 2(4.34c)

S~Derivation of these limits completes the prerequisites for evaluating

S(22

a t'(•) by Eq. (4.21).
£2

D. Numerical Methods and Results

Several examples of calculated incremental radar cross section per

unit frequency as a functior of doppler shift are presented in this sec-

tion. These examples show variations of a (n) with wind speed and

direction for the first-order wave-height spectral models described in

Chapter III (Table 1). Power in the second-order sidebands is calcu-

lated, and compared to first-order, or Bragg-line, power in an attempt

to find methods for predicting wind speed and direction from radar mea-

surements. Attention is restricted to a W() because, for grazing

incidence and observatiun, only vertically polarized radar echoes are

C, obser,.-d.
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1. Integration Methods

Sg r.Numerical techniques are utilized to evaluate (4.21) for

SW() " The integration region (Fig. 37) is subdivided into three

smaller regions (Fig. 50) so as to isolate the circle b(p,q) =0 where

the integrand of (4.21) is nearly

p.slngular. In the annulus (region

2), the integrand is evaluated at ki

finer increments than is required REGION 3

in region 1 or 3. The lengths of

•1the radii R1 and R2, defining 2E 2
region 2, are not critical and werR
set at 1.80 and 2.2p for conve-

nience. Simpsonts rule for numer- ON I

ical integration [Herriot, 1963,

pp. 25-291 was used to obtain the 213 It

results presented. --

The number of points re- 2ig. 50. SUBREGIONS OF INTEGRATION.

quired by Simpson's method in re-

gion 2 depends on the steepness of the integrand slope near b(p,q) = 0

which, in turn, depends on tae value chosen for the normalized surface

impedance A. Barrick (1971) has calculated values of A as a function

of wind speed for several first-order wave-height spectral models. Fig-

ure 51 presents surface impedances based on a Phillips (Table 1) iso-

tropic spectrum. For directional spectrum models, A is a function of

wind direction as well as wind speed for a given radio frequency [Bar-
i f rick, 1971].

Except when i - 23/4 wB2 the exact value selected for A in

the evaluation of (4.21) is not critical. In the difierence mode, Y1ere

integration contours cross b(p,q) = 0 almost orthogonally (Fig. 41),
(2) ~.i eaieysalcmaethe contribution to a)(r)W from region 2 is relatively small compared

f to the total value of the integral. In the sum mode (Fig. 40), contri-

butions from region 2 are again small (although not as small as those in

the difference mode) except when the integrition contours are nearly tan-
gent to b(p,q) = 0. It can be observed in j':- 12 that the power (areL

3/4
under the curve) in the received radar signal 1= 2 WB is also
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Fig. 51. EFFECTIVE SURFACE IMPEDANCE. Calculated nor-
malized effective surface impedance A is based on a
Phillips isotropic wave-height spectrum.

small compared to the total received power; therefore, unless a precise
(2), isrqurdt4r

value Gf a1V I) is required at 71 = 2 wB. values of A larger

than those indicated in Fig. 51 can be chosen with little effect on
(2)

a•( (q). To reduce the number of points at which the integrand in(4.21)

must be evaluated in region 2, a value of A = 0.05 + 1 0.05 was set for

all computations presented here.

2. Calculated Values of a VV (TI)

Figure 52 is a plot of aW(n) • wB vs n/wB for a Phillips

semi-isotropic wave-height spectrum. The wind speed is 30 knots, and the

directions (Fig. 53) are crosswind and upwind, corresponding to 6 = 900

and 6 = 1800, respectively. The value of the equilibrium range con-
w

( stant is e = 0.01 and will be maintained throughout. Swell has been
e

neglected in the calculations leading to Fig. 52 and in most of the re-

sults presented here, except where noted. The radar frequency is 10MHz.

The first-order contributions to incremental radar cross sec-

c• tion per unit fre- tency are represented by delta functions in frequency

[Eq. (4.21)]. 'Ilese Bragg lines are shown in Fig. 52; however, the
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0 (T (1)

S= j (0 ) d
I 00

for the negative Bragg line. The first-order contribution to (4.21) is
ow (n) (see Appendix B).

WIND DIRECTION

Ac.. ......_____ ,/___ RADAR POINTINGPDRECTION

RADAR UPWIND DOWNWIND
•CROSSWIND

Fig. 53. WIND DIRECTIONS.

Figure 52 also exhibits the characteristic spikes at 71=±PwB• !+ +3/4
and Tj ±2 wB that appeared in the radar cross section of the Munk

spectrum (Fig. 42). These spikes were considered in some detail in Sec-

tion C.4.b.

A feature characteristic of all semi-isotropic spectra is their

lack of radar cross section in certain regions of dopplershift Ti. There

is no sum-mode cross section in the crosswind direction, and scattered

power has only a positive or negative doppler shift in the upwind or

downwind directions, respectively. This feature can be explained by ap-

K plying the double Bragg-scattering concept to a wave-height spectrum that

is nonzero only on a half-plane (Fig. 20).

The sharp cutoffs in radar cross section near the Bragg lines

in Fig. 52 result when the wave-height spectri is limited to waves trav-

eling slower than the wind. In the differenc•-nwde region of positive
](2)

doppler shift, the maximum value Tmax at vhich aVV (0) is nonzero

occurs when one ocean-wave train in a double Bragg-scattering process

produces the maximum possible doppler shift w lmax and the second pro-

duces the minimum possible doppler shift W2min; that Is,
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r•max i 'Imax "2min

or

gclax gkfma J ;

Because of the wave-speed limitation, k = 2 where

%max is the wave speed equal to wind speed. From Fig. 36,

k - k2 20

therefore,

max 2 +k2min 2  C 2

max

and

S20g += 1 2 - (4.35)
"maxmax max" ~max

In the sum-mode region of positive doppler shift, a similar argument

leads to

2
in= =20g - C2. + Cm (4.36)

max

These last two equations represent tbe values of doppler shift at which

the second-order contribution to radar cross section near the Bragg

lines becomes zero. For the examples in Fig. 52, ±ma7 = 3 in

the difference mode and = -1.26w, in the sum mode. These expres-

sions are valid when the wave-height spectrum cutoff is determined solely

by Cm, whatever the relationship between wind speed and maximum wave

speed.

A so;.u-what more realistic description of incremental radar

cross section is plotted in Fig. 54 where a Munk wave-height spectrum
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(Table 1) has been assumed. In this spectrum, ocean waves are allowed

to propagate in all directions; as a result, taere are sum- and differ-

ence-mode contributions to second-order radar cross sections at positive

and negative doppler shifts for both crosswind and upwind conditions.

The wind speed of 30 knots is assumed at kn anemometer height of 6.4 m

and corresponds to a friction velocity o2 0.725 m/sec. The constant e

S allows for ocean-wave energy propagating against the wind ahd is zero in

this example; however, Fig. 55 illustrates the effects of finite e.

The position of the near-Bragg-line cutoffs for this spectrum

are determined by the p-parameter cutoff po which is related to the

imaximum wave velocity by

C
max ýoK

where K is Karman's constant (;0.41) and u. (Chapter III.C.2) is the

friction velocity defined by Eq. (3.45). For = 0.1, nax = ±-0.76wB
and 'min = ±1.24w B from Eqs. (4.35) and (4.36).

An example of radar cross section that does not have quite the

sharp near-Bragg-line cutoffs associated with the Phillips and Munk spec-

tra is shown in Fig. 56, ,Yhere a Pierson-Moskowitz amplitude spectrum
S~2

with a directional dependence of cos (8/2) (Table 1) has been assumed.

This spectrum provides an exponential wave-height decay for waves travel-

ing faster than the wind (Fig. 19), rather than a sharp transition to

z.ero wave height, and will be used in most of the remaining discussion

of a W(rn) in this chapter; however, corresponding results obtained

from the Phillips and Munk spectra are presented in Appendix C.

Variations of a __(n) with wind direction are illustrated in

Fig. 57 for 0 = 112.50, 1350, and 154.50 (Fig. 53). The upwind and

crosswind values (0w = 1800 and 900) for rW(i) are found in Fig.

56. Plots of a (rI) for e between 1800 and 900 also represent
V w

a W(-n) for e from 00 to 900, respectively. Plots for both negative

and positive values of e are the same.

As the direction changes from crosswind to upwind, values of

-: W(i). for positive doppler shifts increase and those for negative
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Fig. 55. RADAR CROSS SECTION FOR WAVES TRAVELING AGAINST THE
WIND. A Munk wave-height spectrum with wind speed 30 knots

t and direction = 1350 assumed.
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shifts become smaller. A similar trend toward negative ij occurs whp.

the direction shifts to downwind. Both first- and second-order contri-

butions to aVV(0) exhibit this wind-direction dependence, suggesting

that either could be used to determine wind, direction from radar mea-

surements. This possibility is discussed in the next section.

Variations of VV(n) with wind speed are plotted in Fig. 58,

where the first-order Bragg lines have been suppressed for clarity. An

increase in wind speed has little effect on ocean waves that are already

saturated; however, as wind speed increases, "the unsaturated lower fre-

quency waves grow in height until equilibrium is reached (Fig. 19 illu-

strates the equilibrium state or wave-height spectrum for the Pierson-

Moskowitz and Phillips models with wind speeds of 20 and 40 knots).

t: 1.0 -

3

,p - 1 0 -3 -

>% o"-
b

WIND
SPEED

- --- 40 KNOTS
30
20• •15

-I 0 I

Ic NORMALIZED DOPPLER SHIFT '7//R

Fig. 58. VARIATIONS IN RADAR CROSS SECTION WITH WIND SPEED. A

Pierson-Moskowitz cosine-squared wave-height spectrum with wind
direction =1350 assumed. The first-order Bragg lines have been

I C suppressed for -larity. Radar frequency = 10 MHz.
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Increased wave height appears as an increase in the level of aW (n),

whereas the addition of lower frequency waves to the wave-height spec-

trum causes the near-Bragg-line cutoffs to move clo-:er to the Bragg line.

The dependency of aW(1) on wind speed suggests that such speed might

also be determined from radar measurements. This possibility is alsu

discussed in the next section.

Second-order ele tromagnetic and hydrodynamic effects have

been included in the calculations of aW(11), and Fig. 59 shows the

contribution of each to the total incremental redar cross section. The

hydrodynamic term r dominates, whereas the electromagnetic term r

influences c a(t) H • = 23'/ WB and in the region near zero doppler

shift. The singularity in rH at W = B causes the rather large val-

ues in aVV(T) as q approaches the Bragg line. The spike at = =,F J B
occurs in both r and r contributions and is a result of the Bragg

EM H
condition when n = 2 (Section C.4.b provided further details concern-

ing this spike). The barely discernible discontinuity appearing at Tj=

3/4-2 wB is a consequence of numerically evaluating (4.21) for wave-

height spectra with zero amplitude for waves traveling directly against

the wind. This discontinuity vanishes for finite wave amplitudes (Fig.

55, • = 0.05).

In Section C.1, alternate mEthods were suggested for combining

r•EM and r H in expression (4.21). There was also some controversy con-

cerning the relative weighting of the two terms. Calculations presented

here have been based on the form

2 1221rPI + 8srHI

An alternate form [Barrick, 19711 suggests that fields scattered by sec-

k ond-order ocean waves are correlated with second-order fields scattered

by first-order ocean waves and is given by

4Ir - ir 12

1
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Fig. 59. ELECTROMAGNETIC AND HYDRODYNAMIC CONTRIBITTIONS 70 RADAR
CROSS SECTION. Equation (4.21) has been evaluated for integrand

kerel o 2[ý+82 rý and 8r.A Pierson-Moskowitz•~~ ~~~ kenl f2• 8H, 2EM v H.
•: cosine-squared wave-height spectrum with wind speed = 15 knots

and direction = 135° assumed. Radar frequency = 10 MHz.

A third form results when the weighting of the first form is combined

with the coherent addition of the second,
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Values of aW(I) based on each form are presented in Fig. 60. The dif-

ference between coherent and incoherent addition is significant only for

S> 2 3/4" %B (the sum-mode evanescent region) because, for freely propa-

gating intermediate radio waves, rEM is real if the surface impedance

is neglected and the first and third forms are the same. Differences in

the relative weighting of rEM and rH appear as differences in the

magnitude of aW(W). Overa.l agreement among the three forms will make

1.0"

2rE+ 8r HS.... I rE M- I Ay rll2
-....41rEM-i rH 12

O-I,

'K b! >1

NO M LI E DOP LE SH F i) w

Fg 6 io-3  O

I'\
-o

10\

Fig 60. RAA RS SECTION FOR THREE MTODS FOR COMBINING

ELECTROMAGNETIC AND HYDRODYNAMIC EFFECTS. A Pierson-Moskow-
Sitz cosine-squared wave-height spectrum with wind speed = 30

knots and direction = 1350 assumed.
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difficult a selection based on comparisons of theoretical to measured

values of aW(q).

Normalization of ar(Tj) and 11 by the Bragg frequency wB

allows a family of aW(9) curves to be represented by a single plot.

It is not difficult to show that values of 0WV(W/B) -B are constant

for all wind speeds u and radar frequencies f, such that fu2 is
*2 2 2

constant (fu2 for the Munk spectrum). The contours of fu and fu2

(Fig. 61) can be used to relate the curves of aW(1) presented here

and in Appendix C to various conditions of wind speed and radar frequency.

3. Estimators for Wind Speed and Direction

Plots of a.(9) in the above sectioa varied with wind speed

and direction, suggesting that wind conditions might be obtained from

10010

. 401

I I IJ! r•[I • I W |l %%.4 '• 1 III

5 505 I0 20 5 I 23 5 0 20
10. W 30

FREQUJENCY, f (MHz) FREQUENCY, t (MHz)

a. Ph•illips and Pierson-Moskow- b. Munk spectrum
t itz spectra

Fig. 61. PARMTRIZATION OF RADAR CROSS SECTION. A single plot of
normalized radar cross section a(ii) •*• vs normalized doppler shift
i•/wB describes all cross sections, such that fu 2  (fu2, for the hmuk
spectrum) is a constant. Cross sections described by contours below

(; the cutoffs contain no first-order Bragg lines. For the Munk spectrum,
wind speed u is assumed at a height of 6.4 m.
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radar measurements. In this section, various parameters derived from

SaWW 0) are examined to determine which, if any, are suitable for pre-

dicting these conditions.

As a starting point, consider the ratio of positive-to-nega-

tive Bragg-line power as a function of wind direction (Fig. 62). This

ratio is independent of wind speedt for the Pierson-Moskowitz amplitude

spectrum with a cos (8/2) directional dependence. For the Munk spec-

trum, however, it is a function of both wind direction and speed because,

although the first-order Bragg-scattering waves are saturated, the spread

factor s, which determines the directional dependence of this spectrum,

is a function of wind speed (Eq. (3.50)].

Estimation of wind direction for the spectrum in Fig. 62a is

straightforward because each Bragg-line ratio corresponds to a unique

40- 40- /WIND

SSPEEDF 15 knots

230 20• o /

02 a, 0 20

ALL WIND 4 30
SPEEDSw204

OI I2 -

100 120 140 160 180 100 120 140 160 180
WIND DIRECTION (dog) WIND DIRECTION (dog)

a. Pierson-Moskowitz spectrum-- b. Munk spectrum

"cos2 (8/2) directional de-
pendence

Fig. 62. BRAGG-LINE RATIO VS WIND SPEED AND DIRECTION.

t Waves responsible for first-order Bragg scatter are saturated for wind

speeds greater than z9.5 knots when the radar frequency is 10 Mfz. Only
wind speeds of 10 knots or greater are considered here.
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directt.on; however, if the Munk spectrum provides a better model for

ocean-wave height, wind speed must be known so as to obtain wind direc-

tion from the Bragg-line ratios. A plot of these ratios for the Phil-

lips semi-isotropic spectrum has been omitted because both positive and

negative Bragg lines do not exist simultaneously and the amplitude of

the existing line is independent of wind direction and speed.

A possible parameter for estimating wind direction from sec-

ond-order incremental radar cross sectiors is illustrated in Fig. 63,

where the ratio of power with positive doppler shift to that with nega-

tive shift

0• (2)

f ý c)(TI) d q

is plotted as a function of wind direction. For both spectra, this ra-

tio is a function of wind speed and direction; thereZora, an estimate of

wind direction requires knowledge of wind speed. This ritio is finite,

however, for all wind directions including up- and downwind--an advan-

tage over the Bragg-line ratio when only a single radar-pointing direc-

tion is available. In addition, Bragg-line power is scr.ttered by ocean

waves of a single frequency that may not be indicative of tne overall

wind-generated surface spectrum at any given time; conversely, second-

order power is derived from the entire surface-height spectrum and is

less susceptible to single-frequency anomalies.

Comparison of the plots in Fig. 63 indicates that the vecond-

order power ratio increases with wind speed near upwind conditions forI 2
the Pierson-Moskowitz cos (8/2) spectrum but decreases for the Munk
spectrum (the same is true of the power-ratio magnitude for downwind

conditions). Such dependence of received power on a spectral model il-

lustrates the requirement for an accurate description of directional

t A mirror-image ambiguity exists about the radar line and can be r..olved

by using more than one radar-pointing direction.
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SPEED AND DIRECTION.

180



wave-height spectra before wind direction can be estimated from second-

order power ratios; it also provides a means for selecting or eliminat-

ing proposed models and indicates which measurements are significant for

this purpose.

A possible method for wind-speed estimation considers total

second-order power compared to total Bragg-line power,

(a. (2)) d

W (4.37)

f a,) (T) dl1

Ratios are used because absolute power measurements are difficuit to ob-

tain. Total Bragg-line power is nearly invariant with changes of wind

speed and direction (see Appendix B) as long as ocean waves of frequency

'OB remain saturated and, therefore, provides a convenient reference for

second-order power. Figure 64 presents (4.37) as a function of wind speed

and direction for the Phillips semi-isotropic, Munk, and Pierson-Moskow-

itz co.2 (8/2) spectra.

Second-order power exhibits some wind-direction dependence for
each spectrum; however, variations with wind speed are large enough to

be able to estimate wind speed, in most cases, without knowledge of di-

rection. If an omnidirentional radar antpnna is employed, received power

is independent of wind direction and wind speed cdn be estimated from the

average values shown.

The above ratios are only examples based on model wave-height

spectra. The performance of these methods depends on how well the models

describe actual first-order ocean surfaces. The examples can be extended

to radar frequencies other than 10 MHz with the aid of the graphs in Fig.

1 61.

4. Effects of Swell

Rather sharp spikes occur at discrete doppler freq'.,Ancies in

plots of a(O) vs n when Eq. (4.21) is evaluated, with the model of

ocean-wavy swell (Chapter MII.D) included. Figure 65 is an example in
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Fig. 65. RADAR CROSS SECTION WITH SWELL. The four sharp spikes
are the result of swell at a frequency (B and a direction of
450 (Fig. 53) interacting with local seas represented by a

Pierson-Moskowitz cosine-squared wave-height spectrum. Wind =
4, 30 knots at 1350.

2
which the Pierson-Moskowitz cos (9/2) model represents the local wind-

c generated portion of the first-order spectrum. Generally, four swell-in-.

duced spikes exist at doppler frequencies that are related to the direction

of arrival and frequency of the swell; however, under special conditions,

a fifth spike may occur at n = WB". Power contained in these spikes

is a function of swell wave height as well as speed and direction of the

local winds.
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The relationship between swell and the resultant spikes in

a W (1) can be determined by considering the spectral term W(klx,kly)X

W(k2x k2 y) in (4.21) with swell included,

W(k lxkly) i~y)WW( - ÷,q) + Ws (p -

• (-p- P,-q) + Ws(-p- 3,-q)] (4.38)

where the subscripts w and s refer to the local wind-generated wave-

height directional spectrum and the swell spectrum, respectively. The

term Ww(p -P,q) W(-p-0,-q) represents previously considered ocean

surfaces in the absence of swell, whereas terms involving the swell spec-

trum represent new contributions to aVV(n) and are the origin of the

spikes in Fig. 65.

When arguments -k and -k are allowed in the spectra ofx y
(4.38), the following four possible combinations of swell and wind-gen-

erated spectra interactions exist:

W (-p - •,-q) • Ws(p - •,q)
w s

(4.39)

W w(p + P,q) W Ws(p - P,q)

W (p + Pq) • W (-p + P,-q)w 'w s

From Section C.5, these combinations represent doppler shifts,

Sw + = + positive sum mode

(4.40)
W= - W difference modew s

tAn interchange of subscripts provides four additional combinations, but

these create no new doppler frequencies.
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= -W + W difference modew s

(4.40)

= -W - W negative sum mode Cont.
w s

The first term in (4.39) specifies that swell propagation components k
SX

*and ksy (Fig. 66) must be related to the intermediate scattered radio-

wave propagation components p and q. by

k =p- #

sx p

k =q
sy

therefore,
=-k - 2#

kwx sx

k =-k
wy sy

Similar expressions relating the components of k to those of k eX-w 5

ist for the remaining terms in (4.39). The doppler shifts in (4.40) now

become

T = F[ksx + 2P)2 + ksy] / +

=Jg[( 5r ~ k2 ]I

€ = r(k - 2p)2 + ksy]

(4.41)

-Jg k + 2)2 + k2] ]1/2

ýg [( ,<, 13 s

S= - k[ x - 2P)2 + ky] -1 Fgks

which indicate that wind-driven waves at two frequencies interact with

swell waves to produce the spikes in aVV('). These four doppler
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Fig. 66. RELATIONSHIPS BETWEEN RADIO-WAVE, LOCAL-SEA, AND
C SWELL PROPAGATION CONSTANTS.

frequencies are a function of the swell frequency ws = 4gik and the

swell angle of arrival es = tan-1 (k S/k sx). They also occur in pairs,

symmetric about "-he frequencies ±-+ gks thereby indicating a possible

method for determtining swell conditions from radar measurements. In the

example in Fig. 65, the doppler frequencies are rj = 2.359 wB, -0.125 B'

-0.359 BV, and -1.875 w H and are symmetric about w (the swell fre-

6 •quency in this example).

," l fou-." swell-induced spikes are not always present or observ-

able in plots of aW(n). If swell frequency and angle of arrival are

such that the corresponding wind-driven waves do not exist because of

S6 wind-speed limitations, the spikes are absent in pairs. Swell conditions

may also require corrosponding wind-generated waves to propagate against

the wind where the spectra models considered thus far have zero or near-

zero amplitude. In this event, only one spike of a symmetric pair is

affected because the other results from waves propagating with the wind.

186!.



S

A possible fifth spike may occur at q = -F w but only under

restricted conditions. Swell wave-wave interaction represented by

W s (p - P,q) W (-p - P,-q) in (4.38) is responsible for this spike. To

satisfy simultaneously the conditions

k =P-B
sx

k = P-p-B
sx

requires that p = 0 and k = -P; similarly, k must be zero.
sx sy

Other conditions obtained by replacing the subscript w with s in

(4.39) require that P = 0 for the difference modes and k = P and

k = 0 for the negative sum mode; therefore, the lifth spike occurssy
only when swell propagates directly toward or away from the radar, with

propagation constant P (w = %r2 (B). Because swell is generally asso-

ciated with ocean wavelengths greater than 100 m, radar frequencies be-

low 3 MHz are required before this fifth spike uan be expected.

E. Summary

As a result of calculating aW(q) from the rough-surface model

proposed by Rice, radio-wave scattering from the sea has been interpreted

as a multiple Bragg process in which pairs of ocean-wave trains are re-

sponsible for the scattered electromagnetic fields. Such an interpreta-

tion led to the concept of an intermediate scattered radio wave that

could be either freely propagating or evanescent and whose Cartesian

components of propagaticn constant were the variables of integration in

Eq. (4.17) for aW(q). Subsequent transformation of these variables

reduced this expression to a single integral for which contours of inte-

gration could be identified and related to particular features in curves

of a W(TI) vs ii through the Bragg-scattering concept. Numerical eval-

uation of (4.17) provided a doppler continuum that is characteristic of

those found in observed sea echo and also revealed the dominance of the

second-order hydrodynamic effects in the scattering process. First-order

Bragg-line ratios appeared to be the best estimators for wind or wave
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direction, whereas total second-order power is the best indicator of

wave height and, hence, wind speed; however, such estimators proved to

S3be dependent on the directional wave-height spectral model employed.

How well the second-order theory represents actual scattering from the

sea is the subject of Chapter V.

1

5
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Chapter V

COMPARISONS OF THEORETICAL TO EXPERIMENTAL DATA

Arguments based on the presence of the unsymmetrical sidebands and

the NF2 J and 23/4 wB spikes in both measured and calculated doppler

or sea-echo spectra have been offered in support of the second-order

Bragg theory for radio-wave scattering from the sea [Tyler et al, 1972;

Barrick, 1972; Barrick et al, 1974; Johnstone and Tyler, 1974]; however,

such qualitative comparisons have neither considered the detailed struc-

ture of the doppler continuum nor have they been exact with regard to the

correlation of radar observations with oceanographic and meteorological

data. In this chapter, calculated doppler spectra that conform to ob-

served wind conditions and that account for the finite beamwidth of the

receive antenna are compared to grazing-incidence backscatter measure-

ments of echo spectra that have been corroborated by in-situ tilt-buoy

observations of wave height and direction. In particular, these spectri

are examined for agreement in cutoff frequencies, shape, power content,

and occurrence of swell.

A. The Experiment

E A series of radar measurements taken at Wake Island on 12-19 Novem-

ber 1972 [Teague et al, 1973; Tyler et al, 1974] provides the observa-

tional data for the following comparisons. Using the LORAN--A navigation

facilities on the island (Fig. 67) as a transmitting source (1.95 MHz)

and a van-mounted receiver to form a synthetic aperture, Teague et al

(1973) made extensive radar measurements of sea echo primarily to test

the feasibility of deriving ocean-wave directional spectra from first-

order Bragg-line measurements. Although doppler shifts induced by the

c moving receiver obscured higher order radar returns during the synthetic-

aperture measurements, daily stationary observations for radar calibra-

tion did provide some good examples of second-o-der scattering. Not all

of these observations produced useful data, however, because an attenua-

tor placed between the antenna and the receiver to prevent clipping of

the higher level first-order Bragg power scattered within approximately

189

£



N

LORAN 
1km

TRANSMITTER

$

*WIND 2780 980
OBSERVATIONS rRE TRUE ANTENNA

STATIONARY DIRECTIONS

Fig. 67. MAP OF WAKE ISLAND.

[
20 km of the island reduced most second-order returns to the radar-sys-

tem noise level. On 17, 18, and 19 November, the attenuator was removed;I however, data recorded on the 17th and 18th exhibited the best second-

order returns because of the higher winds on these days (Table 2).

Radar echoes were sampled at 25 ps intervals, thereby grouping data

in range increments (or bins) of 3.75 km each. Direct pulses from the

LORAN-A facility fall in range bin 4, and subsequent range increments

determine the distances from the island to the scattering areas. Because

SSswitching transients associated with the automatic blanking of the direct

pulses appear in the data from the first several bins (Fig. 68a) and
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Table 2

WIND SPEED AND DIRECTION DURING THE WAKE-
ISLAND EXPERIMENT. The values represent

averages over the preceding 24 hours.
Winds are from the directions stated.

Date Speed Direction
(Nov) M/s knots (degrees true)

12 5.0 9.7 55

13 7.8 15.2 61

14 9.8 19.1 59

15 8.2 15.9 66

16 13.0 25.3 60

17 13.0 25.3 62

t 18 12.2 23.7 77

19 9.1 17.7 99

. because ionospheric reflectionst (E-layer) contaminate the echoes near

zero doppler shift in range bins 26 through 30 (Fig. 68 c), only data in

bins 15 through 25 will be considered here (Fig. 68b). These curves

represent averages over the indicated range increments; however, before

averaging, corrections were made for the differences in the distances

between the receiver and the scattering areas by multiplying data in

each range bin by the cube of the distance from the receiver to the

corresponding area. This distance correction results from the assump-

tion of free-space attenuation between the radar and a distributed

scatterer [Skolnik, 1962, p. 529].

The IDRAN-A antenna provided nominally omnidirectional azimuth cov-

erage, whereas the receive antenna had an almost perfect cardioid (volt-

age response) radiation pattern in this same plane. The stationary

tThis increase in near-zero doppler-shified power has been identified as
E-layer scattering by C. Teague. Range bin 28, corresponding to a dis-
tance of 90 km from the radar, contained most of the contaminated data.
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Fig. 68. MEASURED DOPPLER SPECTRUM AS A FUNCTION OF DISTANCE
BETWEEN RADAR AND SCATTERING AREA. Echo power is the aver-

* age over range bins indicated. Direct signal at 1.95 MHz
occurs in range bin 4. Receive antenna direction is 980
true; wind speed and direction are 25.3 knots and 620 true.
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observations were conducted with the peak of the receive-antenna beam

oriented toward 980 true and repeated with the peak at 2780 true (Fig.

67).

B. Comparison to Theory

Ii Direct comparisons of power spectra derived from the expressions

for incremental radar cross section per unit frequency to the Wake-Is-

land data are inappropriate because of the broad coverage of the receive

antenna. A composite of predictod spectra is formed, instead, bycalcu-

latLng unidirectional spectra at 100 increments of the wind direction

with respect to the radar backscatter direction, and then summing the
results after each has been weighted by the desired antenna response

for its particular wind-direction backscatter angle (Fig. 69). Such

composites, formed with an assumed cardioid antenna pattern, are to be

compared to the measured spectra.

The first comparison is presented in Fig. 70 in which a Phillips

semi-isotropic wave-height spectrum at a wind speed of 25 knots has been

assumed. The measured spectrum was recorded on 17 November when the

average wind speed and direction were 25.3 knots and 620 true (Table 2).

Because absolute powers were not measured, the level of the calculated

spectrum was adjusted to obtain a least-squares fit to the observed

spectrum. This fit was applied to the logarithmic curves so as to pro-

vide comparisons at low- and high-power levels. The first-order Bragg

lines and the calculated values that fell below 0 dB were not included

in this adjustment.

The agreement in this comparison is not satisfying. The predicted

cutoff frequencies, where the spectrum drops below 0 dB near the Bragg

lines, are too far removed from these lines, and the spikes normally

observed at ±-+•/ wB and ±23/4 WB for higher wind speeds are absent.

The only point of agreement appears to be the slight increase of power

near zero doppler shift. Comparisons based on the Munk spectrum (Fig.

71) are only slightly better; the ±23/4 WB spikes are present, but the

cutoff frequencies have not changed noticeably and the spikes at ±N+5WB€B
are still missing. The ratio of sum- to difference-mode power appears
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Fig. 69. FORMATION OF A COMPOSITE SPECTRUM. To account

for a finite antenna beamwidth, power backscattered

from different directions with respect to the wind is
weighted by the strength Ai of the antenna response
in the direction of the corresponding scattering area
and then summed.
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DOPPLER FREQUENCY (f,=O.14 Hz)I Fig. 70. MEASURED VS PREDICTED DOPPLER SPECTRA FOR PHILLIPS
SEMI-ISOTROPIC WAVE-HEIGHT SPECTRUM. Height of the first-
order Bragg lines represents power rather than power den-
sity; power-level reference is arbitrary.
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Fig. 71. MEASURED VS PREDICTED DOPPLER SPECTRA FOR MUNK WAVE-
HEIGHT SPECTRUM. Power-level reference is arbitrary.

to be too low compared to that for the observations, and the near-zero

doppler-shift peaking decreased from that predicted by the semi-iso-

tropic spectrum.

The positions of the cutoff frequencies indicate that neither of

these wave-height models has a sufficiently low frequency content; how-

ever, this is to be expected because they do not allow for the resonant

ocean waves that travel faster than the wind. Conversely, nondirec-

tional wave-height spectra measured by a wave-tilt buoy during 13, 15

November contain considerably lower frequencies than would be expected

from wind-speed considerations (Fig. 72). To extrapolate a realistic

wave-height spectrum for 17 November, the measured spectra were approx-

imated by an analytical curve whose expression is similar to that for

the Pierson-Moskowitz spectrum except that the frequency ratio in the

exponent has been raised to the second, rather than to the fourth, power

(Table 1). Figure 72 illustrates this curve for the wind conditions on

15 November. A comparison of predicted and measured scattered power
based on this new wave-height spectrum with an assumed cos (8/2) di-

rect 4 onal dependence is plotted in Ftg. 73 in which agreement between

prediction and observation is seen to have improved slightly over that

based on the other models. This new wave-height spectrum appears to

84s have too m'xch low-frequency content, however, and, to resolve this dis-

parity, it has been postulated that changes in wind speed between 15
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Fig. 72. MEASURED NONDIRECTIONAL WAVE-HEIGHT
SPECTRUM.

and 17 November were sufficiently rapid to prevent the resonant (but not

necessarily the direct wind-driven) waves from reaching equilibrium. If

this is the case, the low-frequency cutoff for the wave-height spectrum

of 17 November would be approximately the same as that for the spectrum

measured on 15 November; therefore, the spectrum of the 17th would have

a sharper low-frequency cutoff than that predicted by the modified Pier-

son-Moskowitz approximation.

A model that exhibits this aharper cutoff and best fits the measured

data is the original Pierson-Moskowitz spectrum which provides the corn-
2parison illustrated in Fig. 74 when a cos (8/2) directional dependence
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Fig. 73. MEASURED VS PREDICTED DOPPLER SPECTRA FOR MODIFIED
PIERSON-MOSKOWITZ WAVE-HEIGHT SPECTRUM. A cosine-squared
directional distribution has been assumed. Power-level
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• Fig. 74. MEASURED VS PREDICTED DOPPLER SPECTRA FOR PIERSON-
MOSKOWITZ COS IIE-SQUARED WAVE-HEIGHT SPECTRUM.* Power-level
rcference is arbitrary.

S~is applied. Agreement in the sum-mode sidebands is particularly good;

however, the difference-mode calculations still contain the near-Bragg-

line shoulders observed previously. Substitution of the kernel employed

S~by Barrick (1971) into the radar cross-section integral (4.21) results

* in a slight reduction of these shoulders but at the expense of the sum-

mode agreement (Fig. 75). Further comparisons between predicted and
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Fig. 75. AN ALTEANATE FORM FOR PREDICTED DOPPLER SPECTRA.
Integrand is 4 fEm - irH 12 for the cross-section integral
producing this plot. A PierSon-Moskowitz cosine-squared
wave-height spectrum has been asst.med. Power-level refer-
ence is arbitrary.

observed power spectra will be required before the differences between

the methods for combining the electromagnetic and hydrodynamic terms in

Eq. (4.21) can be resolved.

As more accurate directional wave-height spectral models become

available, the agreement between measured and predicted radar echoes

will probably improve; however, the original goals were to explain the

continuum observed in these echoes and to provide a theory that would

develop better directional models. Figures 74 and 75 illustrate that

the second-order multiple Bragg-scattering theory explains the doppler

continuum and could provide the means to better models for wave-height

spectra.

To check the quality of the wind-speed estimator introduced in

Chapter IV.D.3, the ratios of second-order power to first-order Bragg-

line power were calculated for both the predicted and observed radar

S C returns, an~d these are tabulated for various wave-height spectra in

Table 3; also included are the estimated wind speeds obtained by de-

termining the equivalent wind speeds at a radar frequency of 10 MHz

from the average ratios in Fig. 64 and then extrapolating these values

I • to 1.95 MHz by means of the contours in Fig. 61. Again, the Pierson-
S~2

Moskowitz cos ((--)/2) spectrum provides the best agreement with the
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Table 3

WIND-SPEED ESTIMATION

Wave-Height Spectrum Second- to First- EstimatedOrder Power Wine Speed

Phillips Semi-Isotropic -17.6 24.5 ± 0.5

Munkt -15.9

2Pierson-Moskowitz cos (E/2) -15.0 25.5 ± 0.5
2

Pierson-Moskowitz cos (8/2) 163 23.8 - 0.5
(Barrick's kernel)i*
Approximation to Measured -11.6 ---

Wake-Island Measurements -14.4 25.3

tFirst-order Bragg lines are below cutoff at 10 MHz (Fig. 61b).

*This value is derived from the ratios in Fig. 61b.

Power ratios as a function of wind speed were not calculated.

These values obtained from data recorded on 17 November with the
antenna peak at 2780 true.

measured values although all wind-speed estimates are better than the

spectra-shape comparisons would appear to Justify. Further comparisons

to observations at several wind speeds or radar frequencies will be re-

quired before the validity of this power ratio as a wind-speed estimator

can be established. Because of t-e broad receive-antenna pattern, wind

dtrections could not be estimated.

The received-power spectrum measured on 18 November with the antenna

at 980 true exhibited some peculiar features that are now considered to

be swell-induced. The nondirectional wave-height spectrum measured on

15 November (Fig. 72) indicated the presence of swell arriving from 3400

true; however, when the frequency and direction of this swell were ap-

plied to the model presented in Chapter II.D, the results did not compare

favorably to the measured data. It has been speculated that the faster

lower frequency waves noted on the 15th had already passed through the

f scattering region by the 18th and that a higher frequency component was

responsible for the observed characteristics. From the doppler frequency
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of one of these features, the swell frequency was estimated to be closer

to 0.12 than to the 0.07 Hz value measured on the 15th. Figure 76 con-

tains plots of the measured data and a composite power spectrum based on
2

a Pierson-Moskowitz cos (9/2) model for the local sea, with swell at

0.12 Hz from 3400 true superimposed. This comparison cannot be consid-

ered a confirmation or a contradiction of the proposed model because the

relative amplitudes of the swell components of the received-power spec-

trum are heavily dependent on the directional form of the local wave-

height spectrum and because the actual swell conditions on the 18th are

unknown. Figure 76 does indicate, however, that the swell model predicts

a doppler-spectrum continuum as well as individual spikes, both of which

are found in the measured data.* The difference-mode shoulders, the near-

zero frequency peaking, and even the outermost somewhat displaced sum-

* mode swell components tend to verify that swell was observed on the 18th

and that the model was able to predict its occurrence, if not its fre-

quency and direction. Particularly noticeable, in view of the compari-

sons in Figs. 74 and 75, is the near-zero doppler-shift peaking caused

by swell. The question as to whether the similar peaking that appeared

in other data was the result of swell has yet to be answered; however,

0
M•MEASUREDI ... -- PREDICTED

0

I] A - IIIi x
W I

-60 I'mm

-"20'
4 f-'f' 0 fe A2"fe 2 /

DOPPLER FREQUENCY (f 8 xO14 Hz)

Fig. 76. DOPPLER SPECTRA WITH SWELL INCLUDED. A Pieraon-
Moskowitz cosine-squared wave-height spectrum has been

I assumed for the local wind-driven sea; swell for the pre-
dicted spectrum is from 340* true at a frequency of 0.12
Hz. Power-level reference is arbitrary.
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r
this possibility must be considered if radar measurements of second-

order power are to provide accurate first-order directional wave-height

spectrum information.
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Chapter VI

CONCLUSIONS AND RECOMMENDATIONS

The search for an explanation of the doppler-spectrum continuum

observed in radar echoes from the sea led to an integral expression for

the bistatic incremental radar cross section per unit frequency of ocean

surfaces; electromagnetic and hydrodynamic effects were included to sc-

ond order. This equation was interpreted as resulting from a double

Bragg-scattering process, thereby providing physical insight into many

of the prominent features ooserved in doppler spectra. When reduced to

the special geometry for backscatter grazing incidence, this integral

was found to agree with previously published results, except for two

minor differences that had a negligible effect on calculated radar cross

sections but, nevertheless, remain unresolved. To invert the cross-sec-

tion equation so as to determine first-order wave-height spectra, the

method presented for reducing this expression to a single integral with-

out the need to solve for roots in an auxiliary transcendental equation

could be of interest. Besides being numerically efficient, this approach

provides easily determined finite limits of integration at all doppler

frequencies except zero. The effects of swell were included in some of

the calculations to determine if the doppler-spectrum features not at-

* tributable to local wind-driven seas and second-order theory were actu-

ally swell-induced.

Comparisons between predicted and observed doppler spectra revealed

that second-order theory accounted for most of the continuum; however,

they also indicated a need for more accurate first-order directional

wave-height spectral models. Calculations, based on the presence of

swell, uncovered characteristics in the doppler spectrum that had not

been considered swell-related. For example, the model for swell pre-

dicted increased received power levels about zero doppler shift--a char-

acteristic observe' not only in the measured data that were expected tG

contain swell, but in all data examined. This particular feature could

explain a major difference between predicted and observed doppler spec-

tra.
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Because the second-order expressions for radar cross section are a

function of the entire first-order wave-height spectrum, a possible ex-

tension of this work would be to consider the inversion of this expres-

sion to obtain such first-order spectra from radar measurements. Al-

though a model for swell has been introduced, the interaction of swell

with local wave-height spectra and the effects of this interaction on

scattered power have not been thoroughly examined. Further radar mea-

surements at several frequencies (or under varied wind conditions), in

conjunction with oceanographic observations, are also considered neces-

sary to test completely the validity of the theories presented and to

answer some of the questions.

12
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Appendix A

INTEGRATION NEAR SINGULARITIES IN THE JACOBIAN

In Chapter IV.C, a transformation of the integral in Eq. (4.17)

from the p,q-plane to the kl,k2 -plane led to the Jacobian

klk

j= To-7qj

which is undefined on the integration-region boundary q = 0 in the

kl,k 2 -plane (Fig. 37). Subsequent integration of (4.17) over k2 re-

sulted in

(2 ' [r•a) Wk 2)) + H (jk1 ,k2 0 )]

W(j Wk 2 k1k2 dk1 (A.1)

Except for the term jq ,-1 the integrand is well-behaved near q 0;

therefore, integration near the singularity becomes

fEdki•2 K --dk1

f1 q

61

where E1 and e2 correspond to q = 0, and q = 5q or -bq on

either the sum- or difference-mode integration contours (Figs. 40 and

41). The value of q can be made sufficiently small such that E2-C1

is small and the remainder of the integrand K can be considered con-

stant. From the definition

k= (p )2 + q2

S
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it follows that

dk 1
-=qdq k 1

or

Sdk 1 = dq

q k

and, therefore,

e 2 dk 5K q dq
K = ==KJ

which integrates to

K log [q + (p-) + q ]10

Although the integrand in (A.1) is si.ngular at q = 0, the integral is

not unles- p = •, in which case,

F• I1  =0

2 2
k2 = ý(p + P)2 + q =20

4, and

1j= ± fp ± B

In reality, however, kI1  can never be zero; therefore, no singularity

can exist at q = 0 and no contribution to second-order radar cross

section occurs at the first-order Bragg frequency.
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Appendix B

0
EVALUATION OF FIRST-ORDER a. FOR MONOSTATIC GRAZING INCIDENCE

First-order incremental radar cross section as defined by

0 G (1 ) (TI) dTi

represents the power contained in the first-order Bragg lines (see Fig.

* 42).

For a monostatic grazing-incidence radar geometry (Fig. 3), first-

order incremental radar cross section per unit frequency is represented

by

ar (Ti)W = l6VP t~(-2pO) b(Ti - WB + w(2p,O) 5(ni + W'~ (B3.1)

where the expanded definition of the ocean-wave propagation constant

(Chapter IV.C) has been included to explain negative doppler shifts.

Arguments of the spectral terms, w(k x,k y) in (B.1), specify that only

ocean waves propagating directly toward or away from the radar with

propagation constant 20 contribute to first-order Bragg lines (Fig.

77).

-TOWARD
-RADAR

Fig. 77. OCEAN WAVE THAT PRODUCES BRAGG-
LINE POWER.
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For 10 MHz radar frequency, ocean waves contributing to the Bragg

line have a frequency of 2.02 rad/sec. Figure 19 shows that, at this

frequency, the Pierson-Moskowitz amplitude spectrum is approximated by

the Phillips saturation spectrum for wind speeds greater than 20 knots;

calculations of a. (Fig. 78) verifies this approximation for wind

speeds greater than 10 knots. For this reason, the Phillips saturation

5 amplitude spectrum is considered an adequate model for sample calcula-

tions o1 0  
*. From Table 1,

w(k xk = 2 Pe

where e is the equilibrium range constant, k = k2 +k2 , and the
e x y

factor of 4 difference between w(k ,k) and S(k,ky) has been in-

cluded.

-10 -

I -
ItD

b -17 -- ,- -

20 20 30 40

WIND SPEED (knots)

Fig. 78. FIRST-ORDER INCREMENTAL RADAR CROSS
SECTION FOR A PIERSON-MOSKOWITZ WAVE-HEIGHT
SPECTRUM. This plot represents either semi-
isotropic or cosine-squared directional dis-
tribut ions.

Spectra with a semi-isotropic directional dependence (Fig. 20) can

cause either positive or negative Bragg lines but not both; therefore,

208

£



11() = 161co w(-2,O) b( - )

11W l(2ý,O Ui, + WB)

For the Phillips semi-isotropic directional spectrum,

• 0

a =16I =2P -0.02

-Lnk k=213

and, for saturated spectra with a cos 2 (8/2) directional dependence

(Fig. 21),

a
0  =161t[ + c= 0.02

[r4]k=2 3

There is some question as to the validity of the value 0.02 (-17 dB) for
0a ° at grazing incidence. Derivations leading to (B.1) assume an inci-

dent field Ei for all angles of incidence. If Ei is assumed for

nongrazing incidence, however, then, at grazing incidence, the total in-
0

cident field above the surface is 2Ei and a = -23 dB. Because sec-

ond-order results are based on the same fields as for first-order calcu-
o

lations, the absolute magnitude of a0(n) is affected by the change to

2E but the ratio of first- to second-order cross sections remains the
i

same. The value of -17 dB is maintained here for consistency with the

C .equations presented; however, the definition of incident field used in

their derivation must be kept in mind when comparing theoretical and

measured radar cross sections at grazing incidence.
2

* The Phillips spectrum with either a semi-isotropic or cos (0/2)
0It directional dependence yields a single value (-17 dB) for a. at all

wind speeds (above cutoff) and directions, but the Pierson-Moskowitz

spectrum yields many values as a function of wind speed (Fig. 78) for

the same directional distributions. These values are nearly constant

C (within 3 dB), however, for wind speeds greater than NI- 72 (9.41knots

at a radar frequency of 10 MHz).
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I Values of cV for the Munk spectrum (Fig. 79) vary with windVV
speed and direction because of the spread factor s. Again, these

variations are small for higher wind speeds.

WIND
SPEEDS-15 - -15 knots

S17 .0 3

10!I _ _ _ _ _ _ _ _I_ _ _ I_ _ _ l

0 00 120 140 160 180

WIND DIRECTION (dog)

rig. 79. FIRST-ORDER INCREMENTAL RADAR CROSS SECTION FOR A MUNK
WAVE-HEIGHT SPECTRUM. Wind direction is the angle from the ra-
dar pointing direction (Fig. 53).
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Appendix C

PLOTS OF INCREMENTAL RADAR CROSS SECTION FOR OCEAN SURFACES

A series of plots of cVV(i) "*B vs i/w. has been generated for

the Phillips semi-isotropic, Munk, and Pierson-Moskowitz cos (9/2)I wave-height spectra. These plots were calculated for wind speeds of 40,

30, 20, 15, and 10 knots, and for wind directions (Fig. 80) of 900,

112.50, 1350, 157.50, and 1800 (Figs. 81-83). Because of symmetry, plots

for the wind directions between 90* and 00 can be obtained by reversing

S* the positive- and negative-frequency axes; those for wind directions be-

tween 0* and -1800 are the same as for 00 to 1800. The radar frequency

is 10 MHz; however, Fig. 61 can be used to determine other frequencies

and wind speeds represented by these plots. For the Munk spectrum, e =0

and the wind speed was assumed at a height of 6.4 m.

WIND DIRECTION

SRADAR POINTING
____DIRECTION

RADAR UPWIND DOWNWIND

CROSSWIND

Fig. 80. WIND DIRECTIONS.

The abscissa of each plot is normalized doppler frequency between

-2.6 and +2.6, and the ordinate is a logarithmic scale extending from

10-5 to 0. The height of the Bragg lines represents

01
0 0VBWBI (T)8(j )dT
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a. 40 knots b. 30 knots

Fig. 81. INCREMENTAL RADAR CROSS SE(TION KJR PHILLIPS SEMI-ISOTROPIC
WAVE-HEIGHT SPECTRUM.
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Fig. 81. ONTJNUED.
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1800
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Fig. 81. CONTINUED.
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00w-
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NORMALIZED DOPPLER SHIFT

a. 40 knots b. 30 knots

Fig. 82. INCREMENTAL RADAR CROSS SECTION FOR A MUNK WAVE-HEIGHT SPECTRUM.
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Fig. 82. CONTIUED.
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Fig. 82. CONTINUED.
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Fig. 83. INCREMENTAL RADAR CROSS SECTION FOR PIERSON-MOSKOWITZ COSINE-
SQUARED WAVE-HEIGHT SPECTRUM.
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Fig. 83. CONTINUED.
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Fig. 83. CONTINUED.
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